Integer Points on A^4+B^4+C^4=1964162*D^4
[2026.02.19]A^4+B^4+C^4=1964162*D^4の整点
■整点を求める方法は、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、詳細はそちらを参照すること。ただし、参照する数式のみ記載する。
自然数nを固定したとき、不定方程式
A^4+B^4+C^4=2*n^2*D^4 ----------(1)
を満たす自明でない整数の組(A,B,C,D) (ただし C!=0かつgcd(A,B,C,D)=1)を探す。
以下では、Elkiesの論文(参考文献[1])の方法およびTom Womackの文書(参考文献[5])を参考にして、(1)を満たす整数の組(A,B,C,D)を探す。
ここで、整数A,B,C,Dは0以上として良い。
■x=A/C,y=B/C.t=D/Cとすると、
x^4+y^4+1=2*n^2*t^4 ----------(2)
つまり、(2)を満たす有理数の組(x,y,t)を見つければ良い。
そのためには、nある有理数uに対して、
±(u^2-2)*y^2=(-u^2+4*u-2)*x^2-2*(u^2-2*u+2)*x+(-u^2+4*u-2) ----------(3a±)
±n*(u^2-2)*t^2=(u^2-2*u+2)*x^2+(-u^2+4*u-2)*x+(u^2-2*u+2) ----------(3b±)
の両方を満たす有理数の組(x,y,t)を見つければ良い。
■任意の有理数uについて、2次曲線(3b+)および(3b-)は、non-singularである。
また、u^2 > 2のとき、(3b+)のみ、u^2 < 2のとき、(3b-)のみが成立する。
■2次曲線(3a)がsingularであるのは、u=0,1,2のときであり。そのときに限る。
u=1のとき、(3a+)はsingularであるが、有理点を持たない。
u-0,2のとき、(3a+)はsingularであり、
x^2 - x + 1=n*t^2 --------(**)
が有理点をもつかどうかを議論する必要がある。
1964162=2*991^2であるので、以下では、n=991とする。
■n=991のとき、2次曲線(**)は、有理点(9/35, 1/35)を持つことが確認できる。
{MAGMAでの計算]
> P2 := ProjectiveSpace(Rationals(), 2);
> N:=991;
> C := Conic(P2,-N*y^2+x^2+x*z+z^2);
> HasRationalPoint(C);
true (-9/35 : 1/35 : 1)
>
■有理数u(u!=0,1,2)の高さが小さいものから、順に調べる。
例えば、有理数uの高さが200以下の範囲で、2つの2次曲線(3a+)と(3b±)が共に有理点を持つようなuを選択すると、以下のように179個のuが抽出される。
これらのuについて、(3a+),(3b±)を共に満たす有理数の組(x,y,t)を見つければ良い。
[MAGMAによる計算]
> PP(991,1,200);
** u= 1/137 ; tau(u)= 273/136 ; -36991*x^2 + 37537*y^2 + 74530*x*z - 36991*z^2
(40591/47221 : -3916/47221 : 1) C1b (27780143/2193995 : 5841/15131 : 1)
** u= 3/37 ; tau(u)= 71/34 ; -2303*x^2 + 2729*y^2 + 5050*x*z - 2303*z^2
(5053/7821 : -190/7821 : 1) C1b (10875/7402 : -305/7402 : 1)
** u= 4/157 ; tau(u)= 310/153 ; -46802*x^2 + 49282*y^2 + 96116*x*z - 46802*z^2
(-35963/301286 : 329493/301286 : 1) C1b (21286474/4992165 : -607093/4992165 : 1)
** u= -5/13 ; tau(u)= 31/18 ; -623*x^2 + 313*y^2 + 986*x*z - 623*z^2
(1/5 : -6/5 : 1) C2b (201633/27118 : 7403/27118 : 1)
** u= -7/137 ; tau(u)= 281/144 ; -41423*x^2 + 37489*y^2 + 79010*x*z - 41423*z^2
(32717/31123 : 10344/31123 : 1) C2b (-46119923/50904866 : 2763131/50904866 : 1)
** u= -8/29 ; tau(u)= 66/37 ; -2674*x^2 + 1618*y^2 + 4420*x*z - 2674*z^2
(19/27 : 20/27 : 1) C2b (-719/187603 : -537/14431 : 1)
** u= 8/53 ; tau(u)= 98/45 ; -3986*x^2 + 5554*y^2 + 9668*x*z - 3986*z^2
(-673/3571 : -3696/3571 : 1) C1b (156495/31522 : 4337/31522 : 1)
** u= 12/185 ; tau(u)= 358/173 ; -59714*x^2 + 68306*y^2 + 128308*x*z - 59714*z^2
(1484/16225 : 95681/113575 : 1) C1b (-1396606/14069 : 302389/98483 : 1)
** u= 13/53 ; tau(u)= 93/40 ; -3031*x^2 + 5449*y^2 + 8818*x*z - 3031*z^2
(-1707/4423 : -4972/4423 : 1) C1b (9969641/528794 : 280041/528794 : 1)
** u= -13/109 ; tau(u)= 231/122 ; -29599*x^2 + 23593*y^2 + 53530*x*z - 29599*z^2
(12953/20513 : -11642/20513 : 1) C2b (-3538462/2311655 : 35103/462331 : 1)
** u= -20/97 ; tau(u)= 214/117 ; -26978*x^2 + 18418*y^2 + 46196*x*z - 26978*z^2
(-43/580 : -747/580 : 1) C2b (124946/305325 : -9019/305325 : 1)
** u= 20/101 ; tau(u)= 182/81 ; -12722*x^2 + 20002*y^2 + 33524*x*z - 12722*z^2
(87385/1106348 : -788247/1106348 : 1) C1b (14831042/2154625 : 411607/2154625 : 1)
** u= 21/101 ; tau(u)= 181/80 ; -12359*x^2 + 19961*y^2 + 33202*x*z - 12359*z^2
(-15289/19225 : 29368/19225 : 1) C1b (-1176483/199145 : -36623/199145 : 1)
** u= 21/157 ; tau(u)= 293/136 ; -36551*x^2 + 48857*y^2 + 86290*x*z - 36551*z^2
(78457/165587 : 46612/165587 : 1) C1b (5631466/13061093 : -353199/13061093 : 1)
** u= -21/173 ; tau(u)= 367/194 ; -74831*x^2 + 59417*y^2 + 135130*x*z - 74831*z^2
(1207339/1029219 : -586406/1029219 : 1) C2b (5918962/7017155 : 41913/1403431 : 1)
** u= -24/25 ; tau(u)= 74/49 ; -4226*x^2 + 674*y^2 + 6052*x*z - 4226*z^2
(3/4 : 7/4 : 1) C2b (-99/11326 : 767/11326 : 1)
** u= -24/125 ; tau(u)= 274/149 ; -43826*x^2 + 30674*y^2 + 75652*x*z - 43826*z^2
(8011/25031 : 155320/175217 : 1) C2b (3212226/2775415 : -684839/19427905 : 1)
** u= 24/145 ; tau(u)= 266/121 ; -28706*x^2 + 41474*y^2 + 71332*x*z - 28706*z^2
(-3581/1007771 : 842116/1007771 : 1) C1b (233461/106695 : -6307/106695 : 1)
** u= -24/145 ; tau(u)= 314/169 ; -56546*x^2 + 41474*y^2 + 99172*x*z - 56546*z^2
(-73441/147 : 12272/21 : 1) C2b (41024710/747109 : -1410317/747109 : 1)
** u= 24/149 ; tau(u)= 274/125 ; -30674*x^2 + 43826*y^2 + 75652*x*z - 30674*z^2
(-67963/1570773 : 1383620/1570773 : 1) C1b (-316491/35446 : 9811/35446 : 1)
** u= -27/25 ; tau(u)= 77/52 ; -4679*x^2 + 521*y^2 + 6658*x*z - 4679*z^2
(359/549 : 1160/549 : 1) C2b (225893/201305 : 13349/201305 : 1)
** u= -27/41 ; tau(u)= 109/68 ; -8519*x^2 + 2633*y^2 + 12610*x*z - 8519*z^2
(8169/20411 : 27664/20411 : 1) C2b (344702/99311 : 14113/99311 : 1)
** u= -28/25 ; tau(u)= 78/53 ; -4834*x^2 + 466*y^2 + 6868*x*z - 4834*z^2
(-21/1924 : 6245/1924 : 1) C2b (491963/10865 : -41769/10865 : 1)
** u= 28/109 ; tau(u)= 190/81 ; -12338*x^2 + 22978*y^2 + 36884*x*z - 12338*z^2
(3259/1052 : 891/1052 : 1) C1b (7169042/399765 : -200501/399765 : 1)
** u= -28/169 ; tau(u)= 366/197 ; -76834*x^2 + 56338*y^2 + 134740*x*z - 76834*z^2
(2051/12048 : 12025/12048 : 1) C2b (1004426/245297 : -30837/245297 : 1)
** u= 31/18 ; tau(u)= -5/13 ; 623*x^2 - 313*y^2 + 986*x*z + 623*z^2
(-3899/5287 : 4578/5287 : 1) C1a (43146/35609 : -2839/35609 : 1)
** u= -31/41 ; tau(u)= 113/72 ; -9407*x^2 + 2401*y^2 + 13730*x*z - 9407*z^2
(37/23 : -108/49 : 1) C2b (-20163/1865 : 11309/18277 : 1)
** u= -31/73 ; tau(u)= 177/104 ; -20671*x^2 + 9697*y^2 + 32290*x*z - 20671*z^2
(20317/15223 : 18548/15223 : 1) C2b (73278458/927161 : 2979399/927161 : 1)
** u= -31/149 ; tau(u)= 329/180 ; -63839*x^2 + 43441*y^2 + 109202*x*z - 63839*z^2
(641/1771 : 1536/1771 : 1) C2b (8018574/319031 : -279079/319031 : 1)
** u= -32/49 ; tau(u)= 130/81 ; -12098*x^2 + 3778*y^2 + 17924*x*z - 12098*z^2
(-277/619 : -1512/619 : 1) C2b (35935/30869 : 1337/30869 : 1)
** u= 32/149 ; tau(u)= 266/117 ; -26354*x^2 + 43378*y^2 + 71780*x*z - 26354*z^2
(311/133 : -750/3059 : 1) C1b (818798/14409 : -540709/331407 : 1)
** u= -33/65 ; tau(u)= 163/98 ; -18119*x^2 + 7361*y^2 + 27658*x*z - 18119*z^2
(11/3 : -14/3 : 1) C2b (-5069430/140639 : -224783/140639 : 1)
** u= -33/89 ; tau(u)= 211/122 ; -28679*x^2 + 14753*y^2 + 45610*x*z - 28679*z^2
(59971/478031 : -602146/478031 : 1) C2b (32763/227191 : -8221/227191 : 1)
** u= 33/149 ; tau(u)= 265/116 ; -25823*x^2 + 43313*y^2 + 71314*x*z - 25823*z^2
(60287/239769 : 112436/239769 : 1) C1b (-19319990/1053957 : -568549/1053957 : 1)
** u= 36/49 ; tau(u)= 62/13 ; 958*x^2 + 3506*y^2 + 5140*x*z + 958*z^2
(-572/1759 : -735/1759 : 1) C1b (-1639/1403 : 53/1403 : 1)
** u= -36/65 ; tau(u)= 166/101 ; -19106*x^2 + 7154*y^2 + 28852*x*z - 19106*z^2
(16199/7730 : -131961/54110 : 1) C2b (-2334/701 : -899/4907 : 1)
** u= 36/125 ; tau(u)= 214/89 ; -14546*x^2 + 29954*y^2 + 47092*x*z - 14546*z^2
(402/2581 : -1297/2581 : 1) C1b (95872538/5777153 : 2654411/5777153 : 1)
** u= -37/125 ; tau(u)= 287/162 ; -51119*x^2 + 29881*y^2 + 83738*x*z - 51119*z^2
(51911/41671 : 38970/41671 : 1) C2b (-38021/232535 : 9683/232535 : 1)
** u= 39/49 ; tau(u)= 59/10 ; 1321*x^2 + 3281*y^2 + 5002*x*z + 1321*z^2
(-911/573 : 574/573 : 1) C1b (654210/4979 : -18181/4979 : 1)
** u= -39/89 ; tau(u)= 217/128 ; -31247*x^2 + 14321*y^2 + 48610*x*z - 31247*z^2
(-991/35023 : 52880/35023 : 1) C2b (-65757939/409177 : -2732191/409177 : 1)
** u= 40/121 ; tau(u)= 202/81 ; -11522*x^2 + 27682*y^2 + 42404*x*z - 11522*z^2
(16153/2909 : 6336/2909 : 1) C1b (-3303397/513585 : 96697/513585 : 1)
** u= -44/65 ; tau(u)= 174/109 ; -21826*x^2 + 6514*y^2 + 32212*x*z - 21826*z^2
(167/14300 : 25951/14300 : 1) C2b (3758/6695 : 249/6695 : 1)
** u= 44/125 ; tau(u)= 206/81 ; -11186*x^2 + 29314*y^2 + 44372*x*z - 11186*z^2
(446/11911 : -6795/11911 : 1) C1b (11773614/9057775 : 357013/9057775 : 1)
** u= 45/49 ; tau(u)= 53/4 ; 1993*x^2 + 2777*y^2 + 4834*x*z + 1993*z^2
(-209/309 : -112/309 : 1) C1b (-872111/6309 : -25769/6309 : 1)
** u= 45/61 ; tau(u)= 77/16 ; 1513*x^2 + 5417*y^2 + 7954*x*z + 1513*z^2
(-1135/4359 : -1264/4359 : 1) C1b (907297/240370 : -26723/240370 : 1)
** u= -47/97 ; tau(u)= 241/144 ; -39263*x^2 + 16609*y^2 + 60290*x*z - 39263*z^2
(-191803/1024147 : 1810944/1024147 : 1) C2b (245214/1261327 : 47813/1261327 : 1)
** u= 47/121 ; tau(u)= 195/74 ; -8743*x^2 + 27073*y^2 + 40234*x*z - 8743*z^2
(5741/945 : 242/135 : 1) C1b (-6105035/1334854 : -178713/1334854 : 1)
** u= -48/41 ; tau(u)= 130/89 ; -13538*x^2 + 1058*y^2 + 19204*x*z - 13538*z^2
(7/5 : 406/115 : 1) C2b (-811/2791 : 7509/64193 : 1)
** u= -48/185 ; tau(u)= 418/233 ; -106274*x^2 + 66146*y^2 + 177028*x*z - 106274*z^2
(-24740/465767 : 616741/465767 : 1) C2b (-70052735/78062222 : -4870389/78062222 : 1)
** u= 49/53 ; tau(u)= 57/4 ; 2369*x^2 + 3217*y^2 + 5650*x*z + 2369*z^2
(-3209/4701 : 1624/4701 : 1) C1b (2936393/167354 : -89613/167354 : 1)
** u= -51/97 ; tau(u)= 245/148 ; -41207*x^2 + 16217*y^2 + 62626*x*z - 41207*z^2
(3641/23323 : -32984/23323 : 1) C2b (874285/1791362 : 61041/1791362 : 1)
** u= 51/149 ; tau(u)= 247/98 ; -16607*x^2 + 41801*y^2 + 63610*x*z - 16607*z^2
(3051/1153139 : -723142/1153139 : 1) C1b (-140693042/88329545 : 1023135/17665909 : 1)
** u= -51/157 ; tau(u)= 365/208 ; -83927*x^2 + 46697*y^2 + 135826*x*z - 83927*z^2
(375/4969 : 43832/34783 : 1) C2b (12384942406/1564351139 : 3079646649/10950457973 : 1)
** u= -52/121 ; tau(u)= 294/173 ; -57154*x^2 + 26578*y^2 + 89140*x*z - 57154*z^2
(1642/157 : -2233/157 : 1) C2b (4646990/3721283 : -149835/3721283 : 1)
** u= 53/4 ; tau(u)= 45/49 ; -1993*x^2 - 2777*y^2 + 4834*x*z - 1993*z^2
(209/393 : -28/393 : 1) C1a (156495/31522 : 4337/31522 : 1)
** u= 55/137 ; tau(u)= 219/82 ; -10423*x^2 + 34513*y^2 + 50986*x*z - 10423*z^2
(18969/262357 : -116378/262357 : 1) C1b (1577026/6552031 : -175221/6552031 : 1)
** u= 56/65 ; tau(u)= 74/9 ; 2974*x^2 + 5314*y^2 + 8612*x*z + 2974*z^2
(-3529/4183 : -2676/4183 : 1) C1b (-158690/40197 : 4279/40197 : 1)
** u= 56/121 ; tau(u)= 186/65 ; -5314*x^2 + 26146*y^2 + 37732*x*z - 5314*z^2
(-141/1795 : -1012/1795 : 1) C1b (-136317430/9945131 : -3725619/9945131 : 1)
** u= 57/4 ; tau(u)= 49/53 ; -2369*x^2 - 3217*y^2 + 5650*x*z - 2369*z^2
(457/477 : -248/477 : 1) C1a (761161/27347 : 22329/27347 : 1)
** u= -57/49 ; tau(u)= 155/106 ; -19223*x^2 + 1553*y^2 + 27274*x*z - 19223*z^2
(-8767/90969 : -342622/90969 : 1) C2b (-8307/11542 : -1729/11542 : 1)
** u= 57/137 ; tau(u)= 217/80 ; -9551*x^2 + 34289*y^2 + 50338*x*z - 9551*z^2
(10025/52383 : -4624/52383 : 1) C1b (14330357/784730 : 386527/784730 : 1)
** u= 57/185 ; tau(u)= 313/128 ; -29519*x^2 + 65201*y^2 + 101218*x*z - 29519*z^2
(2864959/32625105 : -18452848/32625105 : 1) C1b (74129727/2563507 : 2054861/2563507 : 1)
** u= 59/10 ; tau(u)= 39/49 ; -1321*x^2 - 3281*y^2 + 5002*x*z - 1321*z^2
(1025/347 : 266/347 : 1) C1a (-54142/150593 : 117/3673 : 1)
** u= 60/121 ; tau(u)= 182/61 ; -3842*x^2 + 25682*y^2 + 36724*x*z - 3842*z^2
(-934/793 : 1133/793 : 1) C1b (975641/896835 : 33689/896835 : 1)
** u= -60/121 ; tau(u)= 302/181 ; -61922*x^2 + 25682*y^2 + 94804*x*z - 61922*z^2
(-2016/10337 : -18557/10337 : 1) C2b (884142/513895 : -29023/513895 : 1)
** u= 62/13 ; tau(u)= 36/49 ; -958*x^2 - 3506*y^2 + 5140*x*z - 958*z^2
(32/129 : -35/129 : 1) C1a (-181054/453415 : -2821/90683 : 1)
** u= 63/121 ; tau(u)= 179/58 ; -2759*x^2 + 25313*y^2 + 36010*x*z - 2759*z^2
(5771/303959 : -87054/303959 : 1) C1b (14851559/820067 : -396809/820067 : 1)
** u= -64/53 ; tau(u)= 170/117 ; -23282*x^2 + 1522*y^2 + 32996*x*z - 23282*z^2
(299/487 : -1356/487 : 1) C2b (4033962/536555 : -384361/536555 : 1)
** u= 64/109 ; tau(u)= 154/45 ; 46*x^2 + 19666*y^2 + 27812*x*z + 46*z^2
(-89/17948 : -1227/17948 : 1) C1b (3052430/178093 : 81683/178093 : 1)
** u= -65/97 ; tau(u)= 259/162 ; -48263*x^2 + 14593*y^2 + 71306*x*z - 48263*z^2
(-42871/387625 : -764334/387625 : 1) C2b (-3325670/940859 : 199729/940859 : 1)
** u= 66/37 ; tau(u)= -8/29 ; 2674*x^2 - 1618*y^2 + 4420*x*z + 2674*z^2
(-172/151 : 125/151 : 1) C1a (-180910/52909 : -5745/52909 : 1)
** u= -68/125 ; tau(u)= 318/193 ; -69874*x^2 + 26626*y^2 + 105748*x*z - 69874*z^2
(-64/71 : 205/71 : 1) C2b (-210290894/1566241 : 9459987/1566241 : 1)
** u= 69/73 ; tau(u)= 77/4 ; 4729*x^2 + 5897*y^2 + 10690*x*z + 4729*z^2
(-7113/7681 : -3340/7681 : 1) C1b (-638586/310627 : 17341/310627 : 1)
** u= -69/101 ; tau(u)= 271/170 ; -53039*x^2 + 15641*y^2 + 78202*x*z - 53039*z^2
(39491/145243 : 31346/20749 : 1) C2b (1382555/289703 : -60523/289703 : 1)
** u= 69/169 ; tau(u)= 269/100 ; -15239*x^2 + 52361*y^2 + 77122*x*z - 15239*z^2
(-5745/77429 : -49088/77429 : 1) C1b (-36307970/5193759 : 1027169/5193759 : 1)
** u= 71/34 ; tau(u)= 3/37 ; 2303*x^2 - 2729*y^2 + 5050*x*z + 2303*z^2
(599/14357 : 1970/2051 : 1) C1a (494/8043 : -253/8043 : 1)
** u= 72/113 ; tau(u)= 154/41 ; 1822*x^2 + 20354*y^2 + 28900*x*z + 1822*z^2
(-7223/93973 : -12984/93973 : 1) C1b (-1273114/1134825 : -8839/226965 : 1)
** u= -73/89 ; tau(u)= 251/162 ; -47159*x^2 + 10513*y^2 + 68330*x*z - 47159*z^2
(10571/41863 : 74070/41863 : 1) C2b (-52695469/4979535 : -644207/995907 : 1)
** u= 74/9 ; tau(u)= 56/65 ; -2974*x^2 - 5314*y^2 + 8612*x*z - 2974*z^2
(4/7 : 3/7 : 1) C1a (14855942/88163 : 423941/88163 : 1)
** u= 74/49 ; tau(u)= -24/25 ; 4226*x^2 - 674*y^2 + 6052*x*z + 4226*z^2
(-461/1401 : 2800/1401 : 1) C1a (-83251/18881 : 4803/18881 : 1)
** u= 76/85 ; tau(u)= 94/9 ; 5614*x^2 + 8674*y^2 + 14612*x*z + 5614*z^2
(-3293/6398 : -201/914 : 1) C1b (-3377410/300991 : -95437/300991 : 1)
** u= 76/197 ; tau(u)= 318/121 ; -23506*x^2 + 71842*y^2 + 106900*x*z - 23506*z^2
(-81883/626328 : 454817/626328 : 1) C1b (-3999578/2953675 : -29973/590735 : 1)
** u= 77/4 ; tau(u)= 69/73 ; -4729*x^2 - 5897*y^2 + 10690*x*z - 4729*z^2
(1143/707 : -128/707 : 1) C1a (161410/141567 : -4865/141567 : 1)
** u= 77/16 ; tau(u)= 45/61 ; -1513*x^2 - 5417*y^2 + 7954*x*z - 1513*z^2
(11107/34715 : -13968/34715 : 1) C1a (-781989/419114 : -25991/419114 : 1)
** u= 77/52 ; tau(u)= -27/25 ; 4679*x^2 - 521*y^2 + 6658*x*z + 4679*z^2
(-483/13 : 1420/13 : 1) C1a (-47847/53150 : -3151/53150 : 1)
** u= 78/53 ; tau(u)= -28/25 ; 4834*x^2 - 466*y^2 + 6868*x*z + 4834*z^2
(-1877/1242 : 4265/1242 : 1) C1a (-480878/130655 : -34479/130655 : 1)
** u= 79/97 ; tau(u)= 115/18 ; 5593*x^2 + 12577*y^2 + 19466*x*z + 5593*z^2
(-14045/39899 : -498/2347 : 1) C1b (-607830/938231 : 26833/938231 : 1)
** u= -80/73 ; tau(u)= 226/153 ; -40418*x^2 + 4258*y^2 + 57476*x*z - 40418*z^2
(-10601/64901 : -224358/64901 : 1) C2b (5002593/450635 : 387593/450635 : 1)
** u= 81/101 ; tau(u)= 121/20 ; 5761*x^2 + 13841*y^2 + 21202*x*z + 5761*z^2
(-20135/15163 : -14256/15163 : 1) C1b (-5191701/570695 : 140851/570695 : 1)
** u= -84/65 ; tau(u)= 214/149 ; -37346*x^2 + 1394*y^2 + 52852*x*z - 37346*z^2
(-4968/6581 : -55327/6581 : 1) C2b (8022341/430666 : -1068297/430666 : 1)
** u= 84/101 ; tau(u)= 118/17 ; 6478*x^2 + 13346*y^2 + 20980*x*z + 6478*z^2
(-1641/4744 : 83/4744 : 1) C1b (6067753/45306 : 171283/45306 : 1)
** u= -84/101 ; tau(u)= 286/185 ; -61394*x^2 + 13346*y^2 + 88852*x*z - 61394*z^2
(659/280 : -1063/280 : 1) C2b (-8710407/61355 : -507293/61355 : 1)
** u= 84/169 ; tau(u)= 254/85 ; -7394*x^2 + 50066*y^2 + 71572*x*z - 7394*z^2
(-50334/1786943 : -774943/1786943 : 1) C1b (56363055/933182 : -1511327/933182 : 1)
** u= 85/157 ; tau(u)= 229/72 ; -3143*x^2 + 42073*y^2 + 59666*x*z - 3143*z^2
(1351/197357 : -50316/197357 : 1) C1b (-30503479/4916010 : -833281/4916010 : 1)
** u= 88/149 ; tau(u)= 210/61 ; 302*x^2 + 36658*y^2 + 51844*x*z + 302*z^2
(-10815/177302 : -49517/177302 : 1) C1b (-7510571/521191 : -201027/521191 : 1)
** u= -89/145 ; tau(u)= 379/234 ; -101591*x^2 + 34129*y^2 + 151562*x*z - 101591*z^2
(17281/336173 : 558114/336173 : 1) C2b (217104046045/182538177 : 10270810891/182538177 : 1)
** u= 92/137 ; tau(u)= 182/45 ; 4414*x^2 + 29074*y^2 + 41588*x*z + 4414*z^2
(-14585/131762 : 8991/131762 : 1) C1b (-18896455/978651 : 505531/978651 : 1)
** u= 93/40 ; tau(u)= 13/53 ; 3031*x^2 - 5449*y^2 + 8818*x*z + 3031*z^2
(-203/1185 : -644/1185 : 1) C1a (-516538/489097 : 16473/489097 : 1)
** u= -93/85 ; tau(u)= 263/178 ; -54719*x^2 + 5801*y^2 + 77818*x*z - 54719*z^2
(571/9203 : -27046/9203 : 1) C2b (2661998/4552793 : -269989/4552793 : 1)
** u= 93/97 ; tau(u)= 101/4 ; 8617*x^2 + 10169*y^2 + 18850*x*z + 8617*z^2
(-3733/4237 : -1516/4237 : 1) C1b (-13142/3941 : 363/3941 : 1)
** u= 94/9 ; tau(u)= 76/85 ; -5614*x^2 - 8674*y^2 + 14612*x*z - 5614*z^2
(463/220 : 39/220 : 1) C1a (62093/34337 : 1699/34337 : 1)
** u= -96/85 ; tau(u)= 266/181 ; -56306*x^2 + 5234*y^2 + 79972*x*z - 56306*z^2
(2859/2033 : 6602/2033 : 1) C2b (31905/38219 : -2423/38219 : 1)
** u= -96/89 ; tau(u)= 274/185 ; -59234*x^2 + 6626*y^2 + 84292*x*z - 59234*z^2
(1185/8059 : 21718/8059 : 1) C2b (263055967/841247325 : -54682853/841247325 : 1)
** u= 96/113 ; tau(u)= 130/17 ; 8638*x^2 + 16322*y^2 + 26116*x*z + 8638*z^2
(-3161/1527 : 1096/1527 : 1) C1b (409557671/15514 : 11636847/15514 : 1)
** u= -96/145 ; tau(u)= 386/241 ; -106946*x^2 + 32834*y^2 + 158212*x*z - 106946*z^2
(-3763/33211 : 65122/33211 : 1) C2b (-3142534/6978775 : -463137/6978775 : 1)
** u= 98/45 ; tau(u)= 8/53 ; 3986*x^2 - 5554*y^2 + 9668*x*z + 3986*z^2
(-2764/11243 : -6489/11243 : 1) C1a (-872111/6309 : -25769/6309 : 1)
** u= -99/113 ; tau(u)= 325/212 ; -80087*x^2 + 15737*y^2 + 115426*x*z - 80087*z^2
(-2111/271 : -5220/271 : 1) C2b (3267993/1368197 : 153259/1368197 : 1)
** u= 101/4 ; tau(u)= 93/97 ; -8617*x^2 - 10169*y^2 + 18850*x*z - 8617*z^2
(28253/39477 : 8396/39477 : 1) C1a (14822683/373850 : 89639/74770 : 1)
** u= 105/121 ; tau(u)= 137/16 ; 10513*x^2 + 18257*y^2 + 29794*x*z + 10513*z^2
(-13017/5881 : -2728/5881 : 1) C1b (337085/83682 : -10757/83682 : 1)
** u= -105/137 ; tau(u)= 379/242 ; -106103*x^2 + 26513*y^2 + 154666*x*z - 106103*z^2
(15/7 : 22/7 : 1) C2b (3135033/733565 : -145687/733565 : 1)
** u= 108/149 ; tau(u)= 190/41 ; 8302*x^2 + 32738*y^2 + 47764*x*z + 8302*z^2
(-5315/1654 : 2229/1654 : 1) C1b (-255106022/17512285 : -6854791/17512285 : 1)
** u= -108/149 ; tau(u)= 406/257 ; -120434*x^2 + 32738*y^2 + 176500*x*z - 120434*z^2
(-53483/8344 : 114825/8344 : 1) C2b (25250/36053 : -1375/36053 : 1)
** u= 108/193 ; tau(u)= 278/85 ; -2786*x^2 + 62834*y^2 + 88948*x*z - 2786*z^2
(32/21655 : -4451/21655 : 1) C1b (-71626994/794179 : 1915019/794179 : 1)
** u= 108/197 ; tau(u)= 286/89 ; -4178*x^2 + 65954*y^2 + 93460*x*z - 4178*z^2
(836/29 : 699/203 : 1) C1b (494987/121934 : -94421/853538 : 1)
** u= -108/197 ; tau(u)= 502/305 ; -174386*x^2 + 65954*y^2 + 263668*x*z - 174386*z^2
(-764/233 : 10841/1631 : 1) C2b (-259932966/9010301 : 83618093/63072107 : 1)
** u= 109/68 ; tau(u)= -27/41 ; 8519*x^2 - 2633*y^2 + 12610*x*z + 8519*z^2
(-1069/3451 : 708/493 : 1) C1a (4844423/246226 : -246473/246226 : 1)
** u= 113/72 ; tau(u)= -31/41 ; 9407*x^2 - 2401*y^2 + 13730*x*z + 9407*z^2
(-127/101 : 8460/4949 : 1) C1a (42386/180555 : -111521/1769439 : 1)
** u= -113/193 ; tau(u)= 499/306 ; -174503*x^2 + 61729*y^2 + 261770*x*z - 174503*z^2
(-876041/2476379 : -5357718/2476379 : 1) C2b (-18703787/967166 : 895597/967166 : 1)
** u= 115/18 ; tau(u)= 79/97 ; -5593*x^2 - 12577*y^2 + 19466*x*z - 5593*z^2
(3061/9475 : -894/9475 : 1) C1a (597210/536921 : -18967/536921 : 1)
** u= -115/157 ; tau(u)= 429/272 ; -134743*x^2 + 36073*y^2 + 197266*x*z - 134743*z^2
(5097/191 : 9584/191 : 1) C2b (1125658934/2624639 : -59033481/2624639 : 1)
** u= 117/125 ; tau(u)= 133/8 ; 13561*x^2 + 17561*y^2 + 31378*x*z + 13561*z^2
(-6993/5477 : 2740/5477 : 1) C1b (-184391/77674 : -4993/77674 : 1)
** u= 118/17 ; tau(u)= 84/101 ; -6478*x^2 - 13346*y^2 + 20980*x*z - 6478*z^2
(503/558 : -409/558 : 1) C1a (2663010/840767 : -71335/840767 : 1)
** u= 121/20 ; tau(u)= 81/101 ; -5761*x^2 - 13841*y^2 + 21202*x*z - 5761*z^2
(1057/2729 : 924/2729 : 1) C1a (-3303397/513585 : 96697/513585 : 1)
** u= -123/169 ; tau(u)= 461/292 ; -155399*x^2 + 41993*y^2 + 227650*x*z - 155399*z^2
(809/2863 : 31460/20041 : 1) C2b (134494/105467 : -36327/738269 : 1)
** u= -129/145 ; tau(u)= 419/274 ; -133511*x^2 + 25409*y^2 + 192202*x*z - 133511*z^2
(-2329/3895 : -13298/3895 : 1) C2b (425526/564785 : 25183/564785 : 1)
** u= 130/17 ; tau(u)= 96/113 ; -8638*x^2 - 16322*y^2 + 26116*x*z - 8638*z^2
(59271/31369 : 24392/31369 : 1) C1a (2187418/775033 : 58671/775033 : 1)
** u= 130/81 ; tau(u)= -32/49 ; 12098*x^2 - 3778*y^2 + 17924*x*z + 12098*z^2
(-1108/1619 : -1953/1619 : 1) C1a (3613318/1222663 : -221599/1222663 : 1)
** u= 130/89 ; tau(u)= -48/41 ; 13538*x^2 - 1058*y^2 + 19204*x*z + 13538*z^2
(-209/159 : -12154/3657 : 1) C1a (-16582/4433 : 30417/101959 : 1)
** u= -132/97 ; tau(u)= 326/229 ; -87458*x^2 + 1394*y^2 + 123700*x*z - 87458*z^2
(27/122 : 829/122 : 1) C2b (82116046/5699663 : -16544523/5699663 : 1)
** u= 133/8 ; tau(u)= 117/125 ; -13561*x^2 - 17561*y^2 + 31378*x*z - 13561*z^2
(87913/147317 : 20340/147317 : 1) C1a (26649051/2908634 : 766457/2908634 : 1)
** u= -135/97 ; tau(u)= 329/232 ; -89423*x^2 + 593*y^2 + 126466*x*z - 89423*z^2
(8127/5149 : 70948/5149 : 1) C2b (-6808218/7340455 : 4288343/7340455 : 1)
** u= -135/121 ; tau(u)= 377/256 ; -112847*x^2 + 11057*y^2 + 160354*x*z - 112847*z^2
(587/3029 : 8448/3029 : 1) C2b (1685701/367905 : -124079/367905 : 1)
** u= 136/145 ; tau(u)= 154/9 ; 18334*x^2 + 23554*y^2 + 42212*x*z + 18334*z^2
(-1285/751 : -72/751 : 1) C1b (1339585/475323 : -48239/475323 : 1)
** u= 137/16 ; tau(u)= 105/121 ; -10513*x^2 - 18257*y^2 + 29794*x*z - 10513*z^2
(3907/7555 : 2552/7555 : 1) C1a (2054150/3786469 : -103729/3786469 : 1)
** u= 141/193 ; tau(u)= 245/52 ; 14473*x^2 + 54617*y^2 + 79906*x*z + 14473*z^2
(-16169/44445 : -21416/44445 : 1) C1b (6023718/2991455 : 195469/2991455 : 1)
** u= -144/149 ; tau(u)= 442/293 ; -150962*x^2 + 23666*y^2 + 216100*x*z - 150962*z^2
(-1389/1154 : -5953/1154 : 1) C2b (599383/97474 : -36371/97474 : 1)
** u= -144/181 ; tau(u)= 506/325 ; -190514*x^2 + 44786*y^2 + 276772*x*z - 190514*z^2
(-349/80 : -5931/560 : 1) C2b (1478910/675113 : -440219/4725791 : 1)
** u= -144/193 ; tau(u)= 530/337 ; -206402*x^2 + 53762*y^2 + 301636*x*z - 206402*z^2
(11120/47131 : -11123/6733 : 1) C2b (308087/1587570 : 74219/1587570 : 1)
** u= 147/181 ; tau(u)= 215/34 ; 19297*x^2 + 43913*y^2 + 67834*x*z + 19297*z^2
(-21325/10539 : 9926/10539 : 1) C1b (99010/163179 : 5963/163179 : 1)
** u= 153/157 ; tau(u)= 161/4 ; 23377*x^2 + 25889*y^2 + 49330*x*z + 23377*z^2
(-32183/44779 : -360/44779 : 1) C1b (45554049/4948813 : 1491299/4948813 : 1)
** u= 154/9 ; tau(u)= 136/145 ; -18334*x^2 - 23554*y^2 + 42212*x*z - 18334*z^2
(1285/751 : -72/751 : 1) C1a (-31031431/4271426 : -995647/4271426 : 1)
** u= 154/41 ; tau(u)= 72/113 ; -1822*x^2 - 20354*y^2 + 28900*x*z - 1822*z^2
(77/1192 : 51/1192 : 1) C1a (-4865626/185503 : 130637/185503 : 1)
** u= 154/45 ; tau(u)= 64/109 ; -46*x^2 - 19666*y^2 + 27812*x*z - 46*z^2
(23/2981 : -276/2981 : 1) C1a (1142906/194781 : 30961/194781 : 1)
** u= 155/106 ; tau(u)= -57/49 ; 19223*x^2 - 1553*y^2 + 27274*x*z + 19223*z^2
(11959/22705 : 113666/22705 : 1) C1a (11057483/1222558 : 1124939/1222558 : 1)
** u= -156/197 ; tau(u)= 550/353 ; -224882*x^2 + 53282*y^2 + 326836*x*z - 224882*z^2
(-128/149 : -529/149 : 1) C2b (9612318/644287 : 510751/644287 : 1)
** u= 161/4 ; tau(u)= 153/157 ; -23377*x^2 - 25889*y^2 + 49330*x*z - 23377*z^2
(1611/2219 : -148/2219 : 1) C1a (-118985453/17641586 : -3977753/17641586 : 1)
** u= 163/98 ; tau(u)= -33/65 ; 18119*x^2 - 7361*y^2 + 27658*x*z + 18119*z^2
(-3/11 : 14/11 : 1) C1a (-340029/107654 : 12257/107654 : 1)
** u= 163/181 ; tau(u)= 199/18 ; 25921*x^2 + 38953*y^2 + 66170*x*z + 25921*z^2
(-58427/56909 : -34950/56909 : 1) C1b (-75464403/15443521 : 2074307/15443521 : 1)
** u= 166/101 ; tau(u)= -36/65 ; 19106*x^2 - 7154*y^2 + 28852*x*z + 19106*z^2
(-173/416 : 3513/2912 : 1) C1a (-50743/83373 : -19777/583611 : 1)
** u= 168/181 ; tau(u)= 194/13 ; 27886*x^2 + 37298*y^2 + 65860*x*z + 27886*z^2
(-35889/45491 : 19304/45491 : 1) C1b (-238926/125983 : 6503/125983 : 1)
** u= 170/117 ; tau(u)= -64/53 ; 23282*x^2 - 1522*y^2 + 32996*x*z + 23282*z^2
(3455/3413 : 24828/3413 : 1) C1a (-398158839/72561770 : -36683207/72561770 : 1)
** u= -171/149 ; tau(u)= 469/320 ; -175559*x^2 + 15161*y^2 + 249202*x*z - 175559*z^2
(1127/48809 : -163392/48809 : 1) C2b (76065582/45353575 : 4973107/45353575 : 1)
** u= 172/173 ; tau(u)= 174 ; 29582*x^2 + 30274*y^2 + 59860*x*z + 29582*z^2
(-287/264 : 35/264 : 1) C1b (452632694/735767 : 195999/10079 : 1)
** u= 174 ; tau(u)= 172/173 ; -29582*x^2 - 30274*y^2 + 59860*x*z - 29582*z^2
(764/861 : 11/123 : 1) C1a (64633/773045 : -4695/154609 : 1)
** u= 174/109 ; tau(u)= -44/65 ; 21826*x^2 - 6514*y^2 + 32212*x*z + 21826*z^2
(10288/57009 : 118931/57009 : 1) C1a (-438611/155081 : -17607/155081 : 1)
** u= -176/157 ; tau(u)= 490/333 ; -190802*x^2 + 18322*y^2 + 271076*x*z - 190802*z^2
(-2888/38375 : -130623/38375 : 1) C2b (155565/21271 : -12217/21271 : 1)
** u= 177/104 ; tau(u)= -31/73 ; 20671*x^2 - 9697*y^2 + 32290*x*z + 20671*z^2
(135463/95547 : -318868/95547 : 1) C1a (236494/87713 : -12309/87713 : 1)
** u= 177/193 ; tau(u)= 209/16 ; 30817*x^2 + 43169*y^2 + 75010*x*z + 30817*z^2
(-1251/2347 : 1600/16429 : 1) C1b (815787/848159 : -22283/456701 : 1)
** u= 179/58 ; tau(u)= 63/121 ; 2759*x^2 - 25313*y^2 + 36010*x*z + 2759*z^2
(3989/1783159 : -597234/1783159 : 1) C1a (522/3241 : -89/3241 : 1)
** u= 181/80 ; tau(u)= 21/101 ; 12359*x^2 - 19961*y^2 + 33202*x*z + 12359*z^2
(8909/173 : -7192/173 : 1) C1a (-4553/26642 : -733/26642 : 1)
** u= 182/45 ; tau(u)= 92/137 ; -4414*x^2 - 29074*y^2 + 41588*x*z - 4414*z^2
(1688/13967 : -1917/13967 : 1) C1a (9252143/1389338 : -247393/1389338 : 1)
** u= 182/61 ; tau(u)= 60/121 ; 3842*x^2 - 25682*y^2 + 36724*x*z + 3842*z^2
(793/934 : -1133/934 : 1) C1a (-38631958/5125095 : -1032377/5125095 : 1)
** u= 182/81 ; tau(u)= 20/101 ; 12722*x^2 - 20002*y^2 + 33524*x*z + 12722*z^2
(-1223368/15579101 : -11107647/15579101 : 1) C1a (-5905085/1554706 : -160121/1554706 : 1)
** u= 186/65 ; tau(u)= 56/121 ; 5314*x^2 - 26146*y^2 + 37732*x*z + 5314*z^2
(-939/48635 : 20372/48635 : 1) C1a (37469677/3051242 : -1025907/3051242 : 1)
** u= -189/197 ; tau(u)= 583/386 ; -262271*x^2 + 41897*y^2 + 375610*x*z - 262271*z^2
(1189027/4760671 : 9998850/4760671 : 1) C2b (2860656434/146956347 : -185627411/146956347 : 1)
** u= 190/41 ; tau(u)= 108/149 ; -8302*x^2 - 32738*y^2 + 47764*x*z - 8302*z^2
(2030/2341 : -2121/2341 : 1) C1a (35195279/1975714 : 947053/1975714 : 1)
** u= 190/81 ; tau(u)= 28/109 ; 12338*x^2 - 22978*y^2 + 36884*x*z + 12338*z^2
(-517/1436 : 243/1436 : 1) C1a (-2002825/91602 : -56179/91602 : 1)
** u= 194/13 ; tau(u)= 168/181 ; -27886*x^2 - 37298*y^2 + 65860*x*z - 27886*z^2
(752/927 : -407/927 : 1) C1a (-2835/3313 : -155/3313 : 1)
** u= 195/74 ; tau(u)= 47/121 ; 8743*x^2 - 27073*y^2 + 40234*x*z + 8743*z^2
(-5741/945 : 242/135 : 1) C1a (-283939/418111 : -12363/418111 : 1)
** u= 199/18 ; tau(u)= 163/181 ; -25921*x^2 - 38953*y^2 + 66170*x*z - 25921*z^2
(30997/42091 : 2850/6013 : 1) C1a (-25091834/3591723 : -781783/3591723 : 1)
170
>
ここからは、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、最終的に得られた(1)の整点のみを記述する。
ここで、対応する整点が見つかった各有理数uについて、0 <= A <= B <=C を満たすように、A,B,Cを交換して、Dの小さい順に(1)の等式を並べ替えると、以下のようになる。
- u=3/37のとき
634638788061973352806513104711^4+877793553325533660593173237373^4+1421623479202564061007247334230^4=1964162*39621089471366148039674094391^4
214106160877741847201365773136597951717968600535920121093925204825879226872084713974103876578028599130361116741035944746010495010543353926737484447044996857373668794948225999233469863100632810245202228825869009214796421168073932158158180840538411158878168346715505451900199^4+621776871262221788062821643043500283822130804469494243260003595528910946990350554306565663046568988402447034476603274462353955232010499173606304691613420090805378275404220654989399569949734525840037570210936631168925490376455419454618934818648416856811622442450767655067093^4+781851487134949108552086036100177932549057765814824757274228331836680055467135703485653161650828986771314233648658733578379790879007383733057103409482462451648626848686096410552089565853350609559761844162297049683966473185151906806810183281203385418732345257479283341276530^4=1964162*22740283141282088865111992780048438517066765699755971697493168083100982621591471917575845976763298666853308262032320207069348168094035242484552055433003137664752142132553014985837574654900257070757449455437029344985354624815420409724279597134228358020980178085475870374733^4
...
- u=36/125のとき
8717151286028624044219076330485190330087^4+45312733363831442041895340734307537532059^4+132368450688120354500212923529039588763350^4=1964162*3547913267074144586574203486114349882997^4
7443792396306971067868047977020537312890366960577283585722524261487772020844969361965100132382757176208192943423866037264831270915117219211107183876896232935712363121997063527762587992403099135216403895363555440658319804549797435206200924170038042442962048293779841346163315758789538823329551563600740647559266302745157483002706045841848784525690663258378800570834339328363^4+11755126252899977419381640730195814936876515377713219376081025595622505094078661217992947813254028813726549487766269993808054245555278344954355694539952861456993508279143438926034031478151087437210749777791347278513122657980948532058539553204823326774780509617453553310914093665259001967339872761993888127087381906178873612631580030844814894738285364515185355683435938653785^4+37413069429222280359917909494031497152928396883384014014282149369958252483989953553403364477121521364346620718258125234465382379043698487277712239641197499246392818938261013455360482705894788608220407740177126432894139952226427935536834890780055978515958758129975905613227316274315746035547690634356615679564528568533247404814366966417170272975210800630061168852405861169226^4=1964162*1002190753305160398181006230556827964584720283005376282452695137299948332434821526078015969270655971519991961605067984237128772754997507536815219136592302443359059014370618828257127776304514593545098428473024909665260087384129185860463236682585989912677218212794301288647496141760065183670455294271931727396186743437632433618006140095157312146290086653053643841001571053043^4
...
- u=4/157のとき
7832925052113938650688631289326823964845^4+37283534107575056822811851760485027395167^4+46345318902985131190204562774148133608698^4=1964162*1351316497496253239989324126924708339699^4
316101578629737349452551643852822293278580996011545704203415427385474781532211413984729738026145383707863843886813522960527972474707256430042041184408055135580149580361971987491556659910098258013741137996907785125771538588818373735133616599001842555639018265089916054411823168760595205985473962234425682616523313445256158075152467457449316124968808028488283279412016583^4+1459857249118981328003689591238976025346347221231979945886540100647492898376201503057223099653132873846939169343657184497026987229972688036906686135731776240591840334460798886623081785403846204741608149367613622310338113712071275895176575146776232638071306596848364577932946078214960573258672560400677540417255187186540477157969334051635389509629038014247032699544448750^4+1969286276160995828856101392367832492365081419502828502150685414984101865102697177554893139181543913455009731118265320337222790663007354293971124343646008988666149695689976390424436115686562895204901445155702258781093482149770800658036047501451498199364091440878266518628613446267479764758646463289565245790842678342567544997384864432323935528075893841346826418284143443^4=1964162*56198221596445476715845690426213727545763404569158813992016578260783387147209019308861865449403254238233485288439698812690585087700209330078399769658931718429817469901847495395300933045580321711972499899502894217198031462774281348172576168535183651622205272860888017557253200816529775424917887576463878154737613440401816303176833013937018150393694399194682167532327679^4
...
[参考文献]
- [1]Noam Elkies, "On A^4+B^4+C^4=D^4", Math Comp. 51(184), p824-835, 1988.
- [2]StarkExchange MATHEMATICS, "Distribution of Primitive Pytagorean Triples (PPT) and of solutions of A^4+B^4+C^4=D^4", 2016/07/08.
- [3]StarkExchange MATHEMATICS, "More elliptic curves for x^4+y^4+z^4=1?", 2017/07/28.
- [4]Tom Womack, "The quartic surfaces x^4+y^4+z^4=N", 2013/05/17.
- [5]Tom Womack, "elk18.mag", 2013/06/07.
- [6]Tom Womack, "elk18.pts", 2013/06/07.
- [7]Tom Womack, "Integer points on x^4+y^4+z^4=Nt^4", 2013/06/07.
- [8]StarkExchange MATHEMATICS, "a^4+b^4+c^4=2*d^2 such that a,b,c,d are all nonzero Integers & a+b+c!=0", 2024/04/26.
| Last Update: 2026.02.19 |
| H.Nakao |