Integer Points on A^4+B^4+C^4=6962*D^4
[2025.10.24]A^4+B^4+C^4=6962*D^4の整点
■整点を求める方法は、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、詳細はそちらを参照すること。ただし、参照する数式のみ記載する。
自然数nを固定したとき、不定方程式
A^4+B^4+C^4=2*n^2*D^4 ----------(1)
を満たす自明でない整数の組(A,B,C,D) (ただし C!=0かつgcd(A,B,C,D)=1)を探す。
以下では、Elkiesの論文(参考文献[1])の方法およびTom Womackの文書(参考文献[5])を参考にして、(1)を満たす整数の組(A,B,C,D)を探す。
ここで、整数A,B,C,Dは0以上として良い。
■x=A/C,y=B/C.t=D/Cとすると、
x^4+y^4+1=2*n^2*t^4 ----------(2)
つまり、(2)を満たす有理数の組(x,y,t)を見つければ良い。
そのためには、nある有理数uに対して、
±(u^2-2)*y^2=(-u^2+4*u-2)*x^2-2*(u^2-2*u+2)*x+(-u^2+4*u-2) ----------(3a±)
±n*(u^2-2)*t^2=(u^2-2*u+2)*x^2+(-u^2+4*u-2)*x+(u^2-2*u+2) ----------(3b±)
の両方を満たす有理数の組(x,y,t)を見つければ良い。
■任意の有理数uについて、2次曲線(3b+)および(3b-)は、non-singularである。
また、u^2 > 2のとき、(3b+)のみ、u^2 < 2のとき、(3b-)のみが成立する。
■2次曲線(3a)がsingularであるのは、u=0,1,2のときであり。そのときに限る。
u=1のとき、(3a+)はsingularであるが、有理点を持たない。
u-0,2のとき、(3a+)はsingularであり、
x^2 - x + 1=n*t^2 --------(**)
が有理点をもつかどうかを議論する必要がある。
6062=2*59^2であるので、以下では、n=59とする。
■n=59のとき、2次曲線(**)は、有理点を持たないことが確認できる。
{MAGMAでの計算]
> P2 := ProjectiveSpace(Rationals(), 2);
> N:=59;
> C := Conic(P2,-N*y^2+x^2+x*z+z^2);
> HasRationalPoint(C);
false
>
■有理数u(u!=0,1,2)の高さが小さいものから、順に調べる。
例えば、有理数uの高さが500以下の範囲で、2次曲線(3a+)と2つの2次曲線の和集合(3b±)が共に有理点を持つようなuを選択すると、以下のように567個のuが抽出される。
これらのuについて、(3a+),(3b±)を共に満たす有理数の組(x,y,t)を見つければ良い。
[MAGMAによる計算]
> PP(59,1,500);
** u= -1/25 ; tau(u)= 51/26 ; -1351*x^2 + 1249*y^2 + 2602*x*z - 1351*z^2
(151/171 : -50/171 : 1) C2b (-10043179/7418210 : 2029329/7418210 : 1)
** u= -1/441 ; tau(u)= 883/442 ; -390727*x^2 + 388961*y^2 + 779690*x*z - 390727*z^2
(8893/10573 : 1806/10573 : 1) C2b (-2331103/2322761 : -525503/2322761 : 1)
** u= 1/485 ; tau(u)= 969/484 ; -468511*x^2 + 470449*y^2 + 938962*x*z - 468511*z^2
(-21949/145853 : 1172468/1020971 : 1) C1b (28052278/3890925 : -23968291/27236475 : 1)
** u= 4/5 ; tau(u)= 6 ; 14*x^2 + 34*y^2 + 52*x*z + 14*z^2
(-1/2 : -1/2 : 1) C1b (-78/107 : 13/107 : 1)
** u= 4/53 ; tau(u)= 102/49 ; -4786*x^2 + 5602*y^2 + 10420*x*z - 4786*z^2
(-4507/888 : -5047/888 : 1) C1b (-24062/75991 : 11253/75991 : 1)
** u= -4/81 ; tau(u)= 166/85 ; -14434*x^2 + 13106*y^2 + 27572*x*z - 14434*z^2
(112/157 : 63/157 : 1) C2b (183591/36890 : 22333/36890 : 1)
** u= 4/245 ; tau(u)= 486/241 ; -116146*x^2 + 120034*y^2 + 236212*x*z - 116146*z^2
(2246/2799 : 301/2799 : 1) C1b (180258/523603 : 59717/523603 : 1)
** u= 5/13 ; tau(u)= 21/8 ; -103*x^2 + 313*y^2 + 466*x*z - 103*z^2
(-5 : 4 : 1) C1b (43/98 : -11/98 : 1)
** u= -5/29 ; tau(u)= 63/34 ; -2287*x^2 + 1657*y^2 + 3994*x*z - 2287*z^2
(177/181 : -106/181 : 1) C2b (-485/5046 : 763/5046 : 1)
** u= 5/37 ; tau(u)= 69/32 ; -2023*x^2 + 2713*y^2 + 4786*x*z - 2023*z^2
(4817/1271 : 2776/1271 : 1) C1b (12874/21399 : -2417/21399 : 1)
** u= -5/293 ; tau(u)= 591/298 ; -177583*x^2 + 171673*y^2 + 349306*x*z - 177583*z^2
(12273/9449 : 3494/9449 : 1) C2b (1956013/2780370 : -322369/2780370 : 1)
** u= 6 ; tau(u)= 4/5 ; -14*x^2 - 34*y^2 + 52*x*z - 14*z^2
(1/2 : -1/2 : 1) C1a (155/38 : 17/38 : 1)
** u= -7/9 ; tau(u)= 25/16 ; -463*x^2 + 113*y^2 + 674*x*z - 463*z^2
(77/83 : -120/83 : 1) C2b (4318/1317 : -797/1317 : 1)
** u= -7/13 ; tau(u)= 33/20 ; -751*x^2 + 289*y^2 + 1138*x*z - 751*z^2
(5/3 : 92/51 : 1) C2b (1101/85 : 3251/1445 : 1)
** u= 7/41 ; tau(u)= 75/34 ; -2263*x^2 + 3313*y^2 + 5674*x*z - 2263*z^2
(7409/3381 : 1550/3381 : 1) C1b (-1386282/25367 : 168253/25367 : 1)
** u= 7/89 ; tau(u)= 171/82 ; -13399*x^2 + 15793*y^2 + 29290*x*z - 13399*z^2
(17377/26853 : 1598/26853 : 1) C1b (-224214/15553 : 29053/15553 : 1)
** u= 7/153 ; tau(u)= 299/146 ; -42583*x^2 + 46769*y^2 + 89450*x*z - 42583*z^2
(-15341/404539 : 401358/404539 : 1) C1b (-2896024242/129476875 : -75365101/25895375 : 1)
** u= -7/225 ; tau(u)= 457/232 ; -107599*x^2 + 101201*y^2 + 208898*x*z - 107599*z^2
(617069/686399 : -177420/686399 : 1) C2b (8056157/2486942 : 939403/2486942 : 1)
** u= 7/353 ; tau(u)= 699/346 ; -239383*x^2 + 249169*y^2 + 488650*x*z - 239383*z^2
(1514287/4298427 : 2681194/4298427 : 1) C1b (-4368729437/407049854 : -590685823/407049854 : 1)
** u= -7/445 ; tau(u)= 897/452 ; -408559*x^2 + 396001*y^2 + 804658*x*z - 408559*z^2
(312999/1360253 : -1070008/1360253 : 1) C2b (-27225765197/130347898 : 3581415747/130347898 : 1)
** u= -8/29 ; tau(u)= 66/37 ; -2674*x^2 + 1618*y^2 + 4420*x*z - 2674*z^2
(19/27 : 20/27 : 1) C2b (-156389/238 : 1401/14 : 1)
** u= 8/241 ; tau(u)= 474/233 ; -108514*x^2 + 116098*y^2 + 224740*x*z - 108514*z^2
(-2648/123 : 2683/123 : 1) C1b (-5810710/451193 : 773805/451193 : 1)
** u= 8/277 ; tau(u)= 546/269 ; -144658*x^2 + 153394*y^2 + 298180*x*z - 144658*z^2
(-30353/134787 : 161104/134787 : 1) C1b (-2140387/144890 : -56841/28978 : 1)
** u= -8/389 ; tau(u)= 786/397 ; -315154*x^2 + 302578*y^2 + 617860*x*z - 315154*z^2
(87/128 : 47/128 : 1) C2b (87957574/29274655 : 2032281/5854931 : 1)
** u= 11/205 ; tau(u)= 399/194 ; -75151*x^2 + 83929*y^2 + 159322*x*z - 75151*z^2
(37157/89465 : -45746/89465 : 1) C1b (44361/240665 : 28309/240665 : 1)
** u= 12/121 ; tau(u)= 230/109 ; -23618*x^2 + 29138*y^2 + 53044*x*z - 23618*z^2
(6784/79263 : 64427/79263 : 1) C1b (-3417787/54355 : 427563/54355 : 1)
** u= -12/233 ; tau(u)= 478/245 ; -119906*x^2 + 108434*y^2 + 228628*x*z - 119906*z^2
(100582/145811 : -61439/145811 : 1) C2b (114875882/577663 : -15315351/577663 : 1)
** u= 12/433 ; tau(u)= 854/421 ; -354338*x^2 + 374834*y^2 + 729460*x*z - 354338*z^2
(232528/343059 : -84415/343059 : 1) C1b (7210166/4073785 : 162537/814757 : 1)
** u= 13/29 ; tau(u)= 45/16 ; -343*x^2 + 1513*y^2 + 2194*x*z - 343*z^2
(47/297 : 16/297 : 1) C1b (-3502235/424382 : 398317/424382 : 1)
** u= -16/13 ; tau(u)= 42/29 ; -1426*x^2 + 82*y^2 + 2020*x*z - 1426*z^2
(59/6 : -229/6 : 1) C2b (-1847/751 : -1113/751 : 1)
** u= -16/49 ; tau(u)= 114/65 ; -8194*x^2 + 4546*y^2 + 13252*x*z - 8194*z^2
(285/691 : 658/691 : 1) C2b (2911/5569 : 693/5569 : 1)
** u= 16/89 ; tau(u)= 162/73 ; -10402*x^2 + 15586*y^2 + 26500*x*z - 10402*z^2
(-491/2763 : -2750/2763 : 1) C1b (418649/18567 : 49421/18567 : 1)
** u= 17/81 ; tau(u)= 145/64 ; -7903*x^2 + 12833*y^2 + 21314*x*z - 7903*z^2
(79/1393 : -144/199 : 1) C1b (81839/74711 : 10441/74711 : 1)
** u= -17/185 ; tau(u)= 387/202 ; -81319*x^2 + 68161*y^2 + 150058*x*z - 81319*z^2
(4443/39619 : 38842/39619 : 1) C2b (-15778/3798667 : -520033/3798667 : 1)
** u= 17/373 ; tau(u)= 729/356 ; -253183*x^2 + 277969*y^2 + 531730*x*z - 253183*z^2
(464197/15478331 : 14306220/15478331 : 1) C1b (17152542/8372429 : -1920631/8372429 : 1)
** u= -19/97 ; tau(u)= 213/116 ; -26551*x^2 + 18457*y^2 + 45730*x*z - 26551*z^2
(239/369 : -244/369 : 1) C2b (-27862274/1072117 : -4129479/1072117 : 1)
** u= -19/117 ; tau(u)= 253/136 ; -36631*x^2 + 27017*y^2 + 64370*x*z - 36631*z^2
(12073/4219 : -10020/4219 : 1) C2b (1859222/1467249 : -224887/1467249 : 1)
** u= 19/365 ; tau(u)= 711/346 ; -239071*x^2 + 266089*y^2 + 505882*x*z - 239071*z^2
(90569/465077 : -348746/465077 : 1) C1b (2930786/900805 : 333559/900805 : 1)
** u= 19/485 ; tau(u)= 951/466 ; -433951*x^2 + 470089*y^2 + 904762*x*z - 433951*z^2
(-8391647/112029369 : 116017918/112029369 : 1) C1b (-221298938/7729587 : 28749347/7729587 : 1)
** u= -20/17 ; tau(u)= 54/37 ; -2338*x^2 + 178*y^2 + 3316*x*z - 2338*z^2
(-5/96 : 361/96 : 1) C2b (4650/9787 : -2899/9787 : 1)
** u= -20/29 ; tau(u)= 78/49 ; -4402*x^2 + 1282*y^2 + 6484*x*z - 4402*z^2
(5/2 : 7/2 : 1) C2b (-8867/10203 : 3619/10203 : 1)
** u= 20/81 ; tau(u)= 142/61 ; -7042*x^2 + 12722*y^2 + 20564*x*z - 7042*z^2
(-1193/25276 : -20079/25276 : 1) C1b (-82354/46121 : 12557/46121 : 1)
** u= -20/149 ; tau(u)= 318/169 ; -56722*x^2 + 44002*y^2 + 101524*x*z - 56722*z^2
(3018/11399 : 69953/79793 : 1) C2b (13414/3689 : -677/1519 : 1)
** u= -20/153 ; tau(u)= 326/173 ; -59458*x^2 + 46418*y^2 + 106676*x*z - 59458*z^2
(-29/4504 : 5127/4504 : 1) C2b (-136969/174161 : 38393/174161 : 1)
** u= 21/8 ; tau(u)= 5/13 ; 103*x^2 - 313*y^2 + 466*x*z + 103*z^2
(1/5 : -4/5 : 1) C1a (232543/99030 : 30569/99030 : 1)
** u= 21/61 ; tau(u)= 101/40 ; -2759*x^2 + 7001*y^2 + 10642*x*z - 2759*z^2
(-987/26695 : -17924/26695 : 1) C1b (-2478290/109481 : 284757/109481 : 1)
** u= -21/125 ; tau(u)= 271/146 ; -42191*x^2 + 30809*y^2 + 73882*x*z - 42191*z^2
(497/157 : -430/157 : 1) C2b (-465881/421430 : 6597/24790 : 1)
** u= -21/221 ; tau(u)= 463/242 ; -116687*x^2 + 97241*y^2 + 214810*x*z - 116687*z^2
(-123169/809107 : 1011890/809107 : 1) C2b (-683668469/6025883 : 93992511/6025883 : 1)
** u= 23/265 ; tau(u)= 507/242 ; -116599*x^2 + 139921*y^2 + 257578*x*z - 116599*z^2
(1818275/44371011 : -38663482/44371011 : 1) C1b (-24547942/1980325 : 3185717/1980325 : 1)
** u= -24/25 ; tau(u)= 74/49 ; -4226*x^2 + 674*y^2 + 6052*x*z - 4226*z^2
(3/4 : 7/4 : 1) C2b (-2011033/79585 : 570297/79585 : 1)
** u= -24/289 ; tau(u)= 602/313 ; -195362*x^2 + 166466*y^2 + 362980*x*z - 195362*z^2
(-22911/38629 : -65552/38629 : 1) C2b (-1914626/1892783 : -453903/1892783 : 1)
** u= 25/16 ; tau(u)= -7/9 ; 463*x^2 - 113*y^2 + 674*x*z + 463*z^2
(-67/37 : -96/37 : 1) C1a (-37795/8538 : 7313/8538 : 1)
** u= 25/89 ; tau(u)= 153/64 ; -7567*x^2 + 15217*y^2 + 24034*x*z - 7567*z^2
(829/6323 : -3456/6323 : 1) C1b (-2169130/2189029 : 408823/2189029 : 1)
** u= -25/169 ; tau(u)= 363/194 ; -74647*x^2 + 56497*y^2 + 132394*x*z - 74647*z^2
(-29/3351 : -27170/23457 : 1) C2b (-27282466/6913155 : 31269439/48392085 : 1)
** u= 25/173 ; tau(u)= 321/148 ; -43183*x^2 + 59233*y^2 + 103666*x*z - 43183*z^2
(-98039/193251 : 259600/193251 : 1) C1b (6096494/3423585 : -683513/3423585 : 1)
** u= -28/37 ; tau(u)= 102/65 ; -7666*x^2 + 1954*y^2 + 11188*x*z - 7666*z^2
(993/2230 : 3271/2230 : 1) C2b (2540933/243627 : 524401/243627 : 1)
** u= 28/101 ; tau(u)= 174/73 ; -9874*x^2 + 19618*y^2 + 31060*x*z - 9874*z^2
(-7233/34846 : -32195/34846 : 1) C1b (-55039/118742 : 16899/118742 : 1)
** u= -28/117 ; tau(u)= 262/145 ; -41266*x^2 + 26594*y^2 + 69428*x*z - 41266*z^2
(-187171/12020 : -245883/12020 : 1) C2b (-6723/34750 : 5819/34750 : 1)
** u= 28/305 ; tau(u)= 582/277 ; -152674*x^2 + 185266*y^2 + 339508*x*z - 152674*z^2
(93935/177842 : -52169/177842 : 1) C1b (254515/1217901 : 140399/1217901 : 1)
** u= 28/389 ; tau(u)= 750/361 ; -259858*x^2 + 301858*y^2 + 563284*x*z - 259858*z^2
(139877/410078 : 233605/410078 : 1) C1b (-13938450545/96306433 : -1758434013/96306433 : 1)
** u= 28/401 ; tau(u)= 774/373 ; -277474*x^2 + 320818*y^2 + 599860*x*z - 277474*z^2
(53771/4776 : -45169/4776 : 1) C1b (1001330/1523259 : -174055/1523259 : 1)
** u= 29/97 ; tau(u)= 165/68 ; -8407*x^2 + 17977*y^2 + 28066*x*z - 8407*z^2
(11/393 : 256/393 : 1) C1b (-469910/323867 : -74267/323867 : 1)
** u= 29/109 ; tau(u)= 189/80 ; -11959*x^2 + 22921*y^2 + 36562*x*z - 11959*z^2
(-643/17539 : -13368/17539 : 1) C1b (2464755/362762 : -275671/362762 : 1)
** u= -31/229 ; tau(u)= 489/260 ; -134239*x^2 + 103921*y^2 + 240082*x*z - 134239*z^2
(120229/262639 : -186616/262639 : 1) C2b (-279486/426431 : -87743/426431 : 1)
** u= -31/361 ; tau(u)= 753/392 ; -306367*x^2 + 259681*y^2 + 567970*x*z - 306367*z^2
(6174737/22747107 : -18660964/22747107 : 1) C2b (26466638/980381 : 3533091/980381 : 1)
** u= 32/45 ; tau(u)= 58/13 ; 686*x^2 + 3026*y^2 + 4388*x*z + 686*z^2
(-167/1030 : -51/1030 : 1) C1b (62986/2865 : 7039/2865 : 1)
** u= 32/73 ; tau(u)= 114/41 ; -2338*x^2 + 9634*y^2 + 14020*x*z - 2338*z^2
(3769/30054 : -7603/30054 : 1) C1b (45223/48409 : 6717/48409 : 1)
** u= 32/289 ; tau(u)= 546/257 ; -131074*x^2 + 166018*y^2 + 299140*x*z - 131074*z^2
(75249/24521 : -40256/24521 : 1) C1b (-1089717/312046 : 155467/312046 : 1)
** u= -32/317 ; tau(u)= 666/349 ; -242578*x^2 + 199954*y^2 + 444580*x*z - 242578*z^2
(146903/16903 : -144936/16903 : 1) C2b (-67123933/27432285 : -2340419/5486457 : 1)
** u= 32/369 ; tau(u)= 706/337 ; -226114*x^2 + 271298*y^2 + 499460*x*z - 226114*z^2
(189637/451597 : -205632/451597 : 1) C1b (-142672017/5458646 : 18139567/5458646 : 1)
** u= 32/481 ; tau(u)= 930/449 ; -402178*x^2 + 461698*y^2 + 865924*x*z - 402178*z^2
(36913/24948 : 197/3564 : 1) C1b (-2144531/7166370 : -1056541/7166370 : 1)
** u= 33/20 ; tau(u)= -7/13 ; 751*x^2 - 289*y^2 + 1138*x*z + 751*z^2
(-1/583 : 15956/9911 : 1) C1a (-5933/197 : -18027/3349 : 1)
** u= 35/493 ; tau(u)= 951/458 ; -418303*x^2 + 484873*y^2 + 905626*x*z - 418303*z^2
(264669/168221 : 41078/168221 : 1) C1b (-11227157/11025718 : 2393619/11025718 : 1)
** u= -37/109 ; tau(u)= 255/146 ; -41263*x^2 + 22393*y^2 + 66394*x*z - 41263*z^2
(-129/1111 : 11566/7777 : 1) C2b (37998/55595 : 48479/389165 : 1)
** u= -40/49 ; tau(u)= 138/89 ; -14242*x^2 + 3202*y^2 + 20644*x*z - 14242*z^2
(173/1461 : 2828/1461 : 1) C2b (563346/193541 : 105673/193541 : 1)
** u= 40/53 ; tau(u)= 66/13 ; 1262*x^2 + 4018*y^2 + 5956*x*z + 1262*z^2
(-3 : -8/7 : 1) C1b (-1574/1401 : -1469/9807 : 1)
** u= -41/401 ; tau(u)= 843/442 ; -389047*x^2 + 319921*y^2 + 712330*x*z - 389047*z^2
(1501/2169 : 7706/15183 : 1) C2b (-18569035/38281042 : -48904705/267967294 : 1)
** u= 42/29 ; tau(u)= -16/13 ; 1426*x^2 - 82*y^2 + 2020*x*z + 1426*z^2
(-173/167 : -542/167 : 1) C1a (-418/721 : 237/721 : 1)
** u= -43/313 ; tau(u)= 669/356 ; -251623*x^2 + 194089*y^2 + 449410*x*z - 251623*z^2
(-73/177 : 1948/1239 : 1) C2b (-11322259/4992382 : 14425151/34946674 : 1)
** u= -44/125 ; tau(u)= 294/169 ; -55186*x^2 + 29314*y^2 + 88372*x*z - 55186*z^2
(2/11 : 13/11 : 1) C2b (22015/25322 : -3313/25322 : 1)
** u= -44/377 ; tau(u)= 798/421 ; -352546*x^2 + 282322*y^2 + 638740*x*z - 352546*z^2
(54493/14538 : 46687/14538 : 1) C2b (26068338/324835 : 716999/64967 : 1)
** u= -44/449 ; tau(u)= 942/493 ; -484162*x^2 + 401266*y^2 + 889300*x*z - 484162*z^2
(39424/36691 : 17143/36691 : 1) C2b (-369050641/19071937 : 52046179/19071937 : 1)
** u= 45/16 ; tau(u)= 13/29 ; 343*x^2 - 1513*y^2 + 2194*x*z + 343*z^2
(-49/2279 : -1008/2279 : 1) C1a (62986/2865 : 7039/2865 : 1)
** u= 47/145 ; tau(u)= 243/98 ; -16999*x^2 + 39841*y^2 + 61258*x*z - 16999*z^2
(-62651/854813 : 629118/854813 : 1) C1b (11519395/643982 : 1296463/643982 : 1)
** u= 49/377 ; tau(u)= 705/328 ; -212767*x^2 + 281857*y^2 + 499426*x*z - 212767*z^2
(-8649395/81183943 : -79220932/81183943 : 1) C1b (-80712854/14806159 : -10789161/14806159 : 1)
** u= 51/26 ; tau(u)= -1/25 ; 1351*x^2 - 1249*y^2 + 2602*x*z + 1351*z^2
(-959/1139 : -350/1139 : 1) C1a (40303/17057 : 6813/17057 : 1)
** u= -52/49 ; tau(u)= 150/101 ; -17698*x^2 + 2098*y^2 + 25204*x*z - 17698*z^2
(-3377/124912 : 369845/124912 : 1) C2b (-5015090/391629 : -1690271/391629 : 1)
** u= 52/113 ; tau(u)= 174/61 ; -4738*x^2 + 22834*y^2 + 32980*x*z - 4738*z^2
(-4519/10322 : -67765/72254 : 1) C1b (-15266/47245 : 8007/66143 : 1)
** u= 52/333 ; tau(u)= 614/281 ; -155218*x^2 + 219074*y^2 + 379700*x*z - 155218*z^2
(3419/45008 : 34305/45008 : 1) C1b (4731075/4910653 : 635585/4910653 : 1)
** u= -52/373 ; tau(u)= 798/425 ; -358546*x^2 + 275554*y^2 + 639508*x*z - 358546*z^2
(336/1453 : 1327/1453 : 1) C2b (-169459534/1870295 : 23913417/1870295 : 1)
** u= 53/445 ; tau(u)= 837/392 ; -304519*x^2 + 393241*y^2 + 703378*x*z - 304519*z^2
(26015/78901 : -40908/78901 : 1) C1b (-463114/1989385 : -274471/1989385 : 1)
** u= 54/37 ; tau(u)= -20/17 ; 2338*x^2 - 178*y^2 + 3316*x*z + 2338*z^2
(-1/230 : 831/230 : 1) C1a (-211978/26283 : 77219/26283 : 1)
** u= 56/73 ; tau(u)= 90/17 ; 2558*x^2 + 7522*y^2 + 11236*x*z + 2558*z^2
(-209/863 : -36/863 : 1) C1b (1343/18910 : -2167/18910 : 1)
** u= -56/89 ; tau(u)= 234/145 ; -38914*x^2 + 12706*y^2 + 57892*x*z - 38914*z^2
(24903/68491 : 92168/68491 : 1) C2b (26274/342661 : 63977/342661 : 1)
** u= 56/153 ; tau(u)= 250/97 ; -15682*x^2 + 43682*y^2 + 65636*x*z - 15682*z^2
(9487/703 : 4740/703 : 1) C1b (-273383/70263 : -33637/70263 : 1)
** u= -56/261 ; tau(u)= 578/317 ; -197842*x^2 + 133106*y^2 + 337220*x*z - 197842*z^2
(841/1981 : -1632/1981 : 1) C2b (-85531701/3230845 : 2563231/646169 : 1)
** u= 58/13 ; tau(u)= 32/45 ; -686*x^2 - 3026*y^2 + 4388*x*z - 686*z^2
(13/53 : 18/53 : 1) C1a (-3502235/424382 : 398317/424382 : 1)
** u= -60/49 ; tau(u)= 158/109 ; -20162*x^2 + 1202*y^2 + 28564*x*z - 20162*z^2
(24/815 : -3269/815 : 1) C2b (447262/44825 : -187059/44825 : 1)
** u= -60/61 ; tau(u)= 182/121 ; -25682*x^2 + 3842*y^2 + 36724*x*z - 25682*z^2
(512045/261178 : -964513/261178 : 1) C2b (636622/166877 : 151821/166877 : 1)
** u= -60/277 ; tau(u)= 614/337 ; -223538*x^2 + 149858*y^2 + 380596*x*z - 223538*z^2
(-2646/34213 : -44569/34213 : 1) C2b (720470/797701 : 101673/797701 : 1)
** u= 61/65 ; tau(u)= 69/4 ; 3689*x^2 + 4729*y^2 + 8482*x*z + 3689*z^2
(-9063/8731 : 4288/8731 : 1) C1b (1055950/529469 : -169121/529469 : 1)
** u= -61/85 ; tau(u)= 231/146 ; -38911*x^2 + 10729*y^2 + 57082*x*z - 38911*z^2
(30037/59109 : 80606/59109 : 1) C2b (6922846/119571 : -1452799/119571 : 1)
** u= -61/229 ; tau(u)= 519/290 ; -164479*x^2 + 101161*y^2 + 273082*x*z - 164479*z^2
(1605/1709 : -1238/1709 : 1) C2b (133105/342658 : 42831/342658 : 1)
** u= 63/34 ; tau(u)= -5/29 ; 2287*x^2 - 1657*y^2 + 3994*x*z + 2287*z^2
(-295/911 : -786/911 : 1) C1a (-72638/3403 : -10111/3403 : 1)
** u= 64/153 ; tau(u)= 242/89 ; -11746*x^2 + 42722*y^2 + 62660*x*z - 11746*z^2
(3797/25331 : -6270/25331 : 1) C1b (-329287/143399 : 42701/143399 : 1)
** u= -64/193 ; tau(u)= 450/257 ; -128002*x^2 + 70402*y^2 + 206596*x*z - 128002*z^2
(521/469 : -60/67 : 1) C2b (384682/277845 : 48023/277845 : 1)
** u= -65/113 ; tau(u)= 291/178 ; -59143*x^2 + 21313*y^2 + 88906*x*z - 59143*z^2
(337/2061 : -3034/2061 : 1) C2b (15885706/9516445 : -2238813/9516445 : 1)
** u= 66/13 ; tau(u)= 40/53 ; -1262*x^2 - 4018*y^2 + 5956*x*z - 1262*z^2
(30/133 : 61/931 : 1) C1a (80042/4363 : -62163/30541 : 1)
** u= 66/37 ; tau(u)= -8/29 ; 2674*x^2 - 1618*y^2 + 4420*x*z + 2674*z^2
(-172/151 : 125/151 : 1) C1a (3409/897 : -47/69 : 1)
** u= 67/269 ; tau(u)= 471/202 ; -77119*x^2 + 140233*y^2 + 226330*x*z - 77119*z^2
(6805817/1061337 : 3799202/1061337 : 1) C1b (-8591877/372406 : -1020493/372406 : 1)
** u= 68/265 ; tau(u)= 462/197 ; -72994*x^2 + 135826*y^2 + 218068*x*z - 72994*z^2
(246538/1422907 : 746677/1422907 : 1) C1b (4931875/2474181 : 550531/2474181 : 1)
** u= -68/389 ; tau(u)= 846/457 ; -413074*x^2 + 298018*y^2 + 720340*x*z - 413074*z^2
(-2978/48147 : 418361/337029 : 1) C2b (-1824009/1453457 : -2917457/10174199 : 1)
** u= 69/4 ; tau(u)= 61/65 ; -3689*x^2 - 4729*y^2 + 8482*x*z - 3689*z^2
(565/333 : -44/333 : 1) C1a (-11965/12518 : 2557/12518 : 1)
** u= 69/32 ; tau(u)= 5/37 ; 2023*x^2 - 2713*y^2 + 4786*x*z + 2023*z^2
(-705/2023 : -8/17 : 1) C1a (19870/6619 : -2867/6619 : 1)
** u= 69/185 ; tau(u)= 301/116 ; -22151*x^2 + 63689*y^2 + 95362*x*z - 22151*z^2
(-13883/125951 : -90568/125951 : 1) C1b (127353395/5923906 : 14205639/5923906 : 1)
** u= -71/125 ; tau(u)= 321/196 ; -71791*x^2 + 26209*y^2 + 108082*x*z - 71791*z^2
(47121/1625711 : -2632420/1625711 : 1) C2b (-3902674/511281 : 796279/511281 : 1)
** u= 73/81 ; tau(u)= 89/8 ; 5201*x^2 + 7793*y^2 + 13250*x*z + 5201*z^2
(-24217/29837 : -15588/29837 : 1) C1b (143171/114675 : 5179/22935 : 1)
** u= 73/221 ; tau(u)= 369/148 ; -38479*x^2 + 92353*y^2 + 141490*x*z - 38479*z^2
(459/25369 : -688/1103 : 1) C1b (-1381506631/193975270 : -32961071/38795054 : 1)
** u= -73/441 ; tau(u)= 955/514 ; -523063*x^2 + 383633*y^2 + 917354*x*z - 523063*z^2
(11185/526693 : 603582/526693 : 1) C2b (38606022/14258323 : 4647803/14258323 : 1)
** u= 74/49 ; tau(u)= -24/25 ; 4226*x^2 - 674*y^2 + 6052*x*z + 4226*z^2
(-461/1401 : 2800/1401 : 1) C1a (30955/6019 : -9771/6019 : 1)
** u= 75/34 ; tau(u)= 7/41 ; 2263*x^2 - 3313*y^2 + 5674*x*z + 2263*z^2
(241/51 : 250/51 : 1) C1a (-2530/2141 : -311/2141 : 1)
** u= 76/137 ; tau(u)= 198/61 ; -1666*x^2 + 31762*y^2 + 44980*x*z - 1666*z^2
(7351/406496 : 66621/406496 : 1) C1b (-6280893/575749 : -693283/575749 : 1)
** u= 76/365 ; tau(u)= 654/289 ; -161266*x^2 + 260674*y^2 + 433492*x*z - 161266*z^2
(-2/19 : -17/19 : 1) C1b (-3147914/449021 : -396629/449021 : 1)
** u= 77/145 ; tau(u)= 213/68 ; -3319*x^2 + 36121*y^2 + 51298*x*z - 3319*z^2
(23131/361149 : 13036/361149 : 1) C1b (8188675/2482834 : 921711/2482834 : 1)
** u= 78/49 ; tau(u)= -20/29 ; 4402*x^2 - 1282*y^2 + 6484*x*z + 4402*z^2
(-2713/2880 : -3773/2880 : 1) C1a (121710/25031 : 28967/25031 : 1)
** u= -79/153 ; tau(u)= 385/232 ; -101407*x^2 + 40577*y^2 + 154466*x*z - 101407*z^2
(-775/18251 : 29796/18251 : 1) C2b (7960273/9018465 : 1275613/9018465 : 1)
** u= 79/281 ; tau(u)= 483/202 ; -75367*x^2 + 151681*y^2 + 239530*x*z - 75367*z^2
(-91369/10787 : 75910/10787 : 1) C1b (-14636517/518659 : 1713037/518659 : 1)
** u= 83/85 ; tau(u)= 87/2 ; 6881*x^2 + 7561*y^2 + 14458*x*z + 6881*z^2
(-3063/2645 : -766/2645 : 1) C1b (-6025/42238 : -5057/42238 : 1)
** u= -83/113 ; tau(u)= 309/196 ; -69943*x^2 + 18649*y^2 + 102370*x*z - 69943*z^2
(10511/53693 : 90160/53693 : 1) C2b (-67597/80114 : -29247/80114 : 1)
** u= 83/181 ; tau(u)= 279/98 ; -12319*x^2 + 58633*y^2 + 84730*x*z - 12319*z^2
(-48053/910999 : 487970/910999 : 1) C1b (2783659/724163 : -306821/724163 : 1)
** u= -85/261 ; tau(u)= 607/346 ; -232207*x^2 + 129017*y^2 + 375674*x*z - 232207*z^2
(7031/31475 : -245262/220325 : 1) C2b (1075/1771 : 1531/12397 : 1)
** u= 87/2 ; tau(u)= 83/85 ; -6881*x^2 - 7561*y^2 + 14458*x*z - 6881*z^2
(2373/1879 : -434/1879 : 1) C1a (4566803/142730 : -572923/142730 : 1)
** u= -88/81 ; tau(u)= 250/169 ; -49378*x^2 + 5378*y^2 + 70244*x*z - 49378*z^2
(7019/8711 : 18720/8711 : 1) C2b (-23243/45658 : 21347/45658 : 1)
** u= 88/233 ; tau(u)= 378/145 ; -34306*x^2 + 100834*y^2 + 150628*x*z - 34306*z^2
(66101/1189261 : -604356/1189261 : 1) C1b (11426758/612627 : 1271749/612627 : 1)
** u= -88/373 ; tau(u)= 834/461 ; -417298*x^2 + 270514*y^2 + 703300*x*z - 417298*z^2
(1705186/158618359 : 195225667/158618359 : 1) C2b (376743826/51142393 : -51779319/51142393 : 1)
** u= 89/8 ; tau(u)= 73/81 ; -5201*x^2 - 7793*y^2 + 13250*x*z - 5201*z^2
(841/1013 : 540/1013 : 1) C1a (418649/18567 : 49421/18567 : 1)
** u= 89/121 ; tau(u)= 153/32 ; 5873*x^2 + 21361*y^2 + 31330*x*z + 5873*z^2
(-4161/6553 : 4840/6553 : 1) C1b (-68238/3199 : -7549/3199 : 1)
** u= -89/281 ; tau(u)= 651/370 ; -265879*x^2 + 150001*y^2 + 431722*x*z - 265879*z^2
(76745/79809 : -64042/79809 : 1) C2b (-35221954/10763235 : -6668873/10763235 : 1)
** u= 90/17 ; tau(u)= 56/73 ; -2558*x^2 - 7522*y^2 + 11236*x*z - 2558*z^2
(209/863 : -36/863 : 1) C1a (172798/139525 : -22033/139525 : 1)
** u= -91/73 ; tau(u)= 237/164 ; -45511*x^2 + 2377*y^2 + 64450*x*z - 45511*z^2
(107/201 : -640/201 : 1) C2b (-240543718/1681431 : 115876021/1681431 : 1)
** u= -91/229 ; tau(u)= 549/320 ; -196519*x^2 + 96601*y^2 + 309682*x*z - 196519*z^2
(-10669/14765 : 34352/14765 : 1) C2b (-242971094/45985739 : -45238793/45985739 : 1)
** u= 91/261 ; tau(u)= 431/170 ; -49519*x^2 + 127961*y^2 + 194042*x*z - 49519*z^2
(-25087/140861 : -115242/140861 : 1) C1b (-63766/203145 : -25837/203145 : 1)
** u= 92/157 ; tau(u)= 222/65 ; 14*x^2 + 40834*y^2 + 57748*x*z + 14*z^2
(-3276/113 : -721/113 : 1) C1b (-711154/259349 : -82863/259349 : 1)
** u= 93/229 ; tau(u)= 365/136 ; -28343*x^2 + 96233*y^2 + 141874*x*z - 28343*z^2
(-12979/2407 : -9868/2407 : 1) C1b (1166990/340969 : 128379/340969 : 1)
** u= 93/289 ; tau(u)= 485/196 ; -68183*x^2 + 158393*y^2 + 243874*x*z - 68183*z^2
(105953/1499035 : -852992/1499035 : 1) C1b (6700550/10890097 : 1265253/10890097 : 1)
** u= -95/117 ; tau(u)= 329/212 ; -80863*x^2 + 18353*y^2 + 117266*x*z - 80863*z^2
(10057/6943 : 14556/6943 : 1) C2b (560762/60147 : 121261/60147 : 1)
** u= 95/241 ; tau(u)= 387/146 ; -33607*x^2 + 107137*y^2 + 158794*x*z - 33607*z^2
(73003/752275 : -312718/752275 : 1) C1b (-1458823/3594465 : 465721/3594465 : 1)
** u= -96/145 ; tau(u)= 386/241 ; -106946*x^2 + 32834*y^2 + 158212*x*z - 106946*z^2
(-3763/33211 : 65122/33211 : 1) C2b (413947/123485 : 69267/123485 : 1)
** u= -96/313 ; tau(u)= 722/409 ; -325346*x^2 + 186722*y^2 + 530500*x*z - 325346*z^2
(9779/112809 : 138586/112809 : 1) C2b (7446142/2604959 : 962037/2604959 : 1)
** u= -97/241 ; tau(u)= 579/338 ; -219079*x^2 + 106753*y^2 + 344650*x*z - 219079*z^2
(4188053/157164021 : 31493930/22452003 : 1) C2b (-685551/4021553 : -742459/4021553 : 1)
** u= 97/245 ; tau(u)= 393/148 ; -34399*x^2 + 110641*y^2 + 163858*x*z - 34399*z^2
(27117/161783 : -43232/161783 : 1) C1b (-49730/24416453 : 2736553/24416453 : 1)
** u= -100/289 ; tau(u)= 678/389 ; -292642*x^2 + 157042*y^2 + 469684*x*z - 292642*z^2
(-284/8301 : 11645/8301 : 1) C2b (-19237/7098 : 3869/7098 : 1)
** u= 101/40 ; tau(u)= 21/61 ; 2759*x^2 - 7001*y^2 + 10642*x*z + 2759*z^2
(-4345/27411 : 11068/27411 : 1) C1a (-1333481/10174 : -151053/10174 : 1)
** u= 101/261 ; tau(u)= 421/160 ; -40999*x^2 + 126041*y^2 + 187442*x*z - 40999*z^2
(571475/15984101 : -1192056/2283443 : 1) C1b (-10020022/1574927 : 1176271/1574927 : 1)
** u= 102/49 ; tau(u)= 4/53 ; 4786*x^2 - 5602*y^2 + 10420*x*z + 4786*z^2
(-977/6072 : 4613/6072 : 1) C1a (-18901/18198 : -2423/18198 : 1)
** u= 102/65 ; tau(u)= -28/37 ; 7666*x^2 - 1954*y^2 + 11188*x*z + 7666*z^2
(-1466/4283 : 6667/4283 : 1) C1a (-426/1975 : 377/1975 : 1)
** u= -103/313 ; tau(u)= 729/416 ; -335503*x^2 + 185329*y^2 + 542050*x*z - 335503*z^2
(2560321/104041847 : -19602600/14863121 : 1) C2b (1726238/2761041 : -341429/2761041 : 1)
** u= -104/81 ; tau(u)= 266/185 ; -57634*x^2 + 2306*y^2 + 81572*x*z - 57634*z^2
(103/346 : 1413/346 : 1) C2b (-51775/70154 : 61787/70154 : 1)
** u= -104/101 ; tau(u)= 306/205 ; -73234*x^2 + 9586*y^2 + 104452*x*z - 73234*z^2
(608/3991 : -9903/3991 : 1) C2b (252913/147170 : -55561/147170 : 1)
** u= -109/349 ; tau(u)= 807/458 ; -407647*x^2 + 231721*y^2 + 663130*x*z - 407647*z^2
(-59297/109783 : 1501622/768481 : 1) C2b (304038/434831 : 376013/3043817 : 1)
** u= 111/457 ; tau(u)= 803/346 ; -227111*x^2 + 405377*y^2 + 657130*x*z - 227111*z^2
(8407/28631 : 72970/200417 : 1) C1b (-662741/881147 : -1044039/6168029 : 1)
** u= -112/337 ; tau(u)= 786/449 ; -390658*x^2 + 214594*y^2 + 630340*x*z - 390658*z^2
(33212/270587 : -329999/270587 : 1) C2b (-3642866/326927 : -608069/326927 : 1)
** u= 112/353 ; tau(u)= 594/241 ; -103618*x^2 + 236674*y^2 + 365380*x*z - 103618*z^2
(11721/152783 : 86690/152783 : 1) C1b (63262874/3716745 : -1425443/743349 : 1)
** u= -113/449 ; tau(u)= 1011/562 ; -618919*x^2 + 390433*y^2 + 1034890*x*z - 618919*z^2
(-54208313/45626767 : -120474982/45626767 : 1) C2b (-28376602/1128379 : -4356229/1128379 : 1)
** u= 114/41 ; tau(u)= 32/73 ; 2338*x^2 - 9634*y^2 + 14020*x*z + 2338*z^2
(4351/5129 : 6592/5129 : 1) C1a (-48409/45223 : 6717/45223 : 1)
** u= 114/65 ; tau(u)= -16/49 ; 8194*x^2 - 4546*y^2 + 13252*x*z + 8194*z^2
(29/153 : -14/9 : 1) C1a (-1540230/5107 : -241591/5107 : 1)
** u= 115/117 ; tau(u)= 119/2 ; 13217*x^2 + 14153*y^2 + 27386*x*z + 13217*z^2
(-27653/21163 : -174/21163 : 1) C1b (118215/362734 : -55367/362734 : 1)
** u= -115/289 ; tau(u)= 693/404 ; -313207*x^2 + 153817*y^2 + 493474*x*z - 313207*z^2
(-2121/7433 : -13124/7433 : 1) C2b (3620030/1729909 : 470663/1729909 : 1)
** u= -115/369 ; tau(u)= 853/484 ; -455287*x^2 + 259097*y^2 + 740834*x*z - 455287*z^2
(-67975/75059 : 180576/75059 : 1) C2b (-893409/159490 : -155567/159490 : 1)
** u= -115/481 ; tau(u)= 1077/596 ; -697207*x^2 + 449497*y^2 + 1173154*x*z - 697207*z^2
(-1729/1809 : -4228/1809 : 1) C2b (29222/1097 : 4251/1097 : 1)
** u= -116/89 ; tau(u)= 294/205 ; -70594*x^2 + 2386*y^2 + 99892*x*z - 70594*z^2
(1517/2760 : 10871/2760 : 1) C2b (-1126434/56749 : 695257/56749 : 1)
** u= -116/173 ; tau(u)= 462/289 ; -153586*x^2 + 46402*y^2 + 226900*x*z - 153586*z^2
(36268/70407 : 90967/70407 : 1) C2b (11987647/531425 : 473681/106285 : 1)
** u= 119/2 ; tau(u)= 115/117 ; -13217*x^2 - 14153*y^2 + 27386*x*z - 13217*z^2
(5407/4181 : -342/4181 : 1) C1a (-241/81 : -37/81 : 1)
** u= 119/121 ; tau(u)= 123/2 ; 14153*x^2 + 15121*y^2 + 29290*x*z + 14153*z^2
(-30593/27883 : 6974/27883 : 1) C1b (6856186/310573 : 898341/310573 : 1)
** u= 119/193 ; tau(u)= 267/74 ; 3209*x^2 + 60337*y^2 + 85450*x*z + 3209*z^2
(-1741/87 : -230/87 : 1) C1b (-1839221/121358 : -201431/121358 : 1)
** u= 119/241 ; tau(u)= 363/122 ; -15607*x^2 + 102001*y^2 + 145930*x*z - 15607*z^2
(-45627/185833 : -133166/185833 : 1) C1b (2080678/131099 : 228013/131099 : 1)
** u= 119/313 ; tau(u)= 507/194 ; -61111*x^2 + 181777*y^2 + 271210*x*z - 61111*z^2
(108427/1708687 : -842062/1708687 : 1) C1b (62594642/6722409 : 6907537/6722409 : 1)
** u= -119/369 ; tau(u)= 857/488 ; -462127*x^2 + 258161*y^2 + 748610*x*z - 462127*z^2
(-125389/59681 : 237108/59681 : 1) C2b (1705286209/170473278 : 251707123/170473278 : 1)
** u= 121/281 ; tau(u)= 441/160 ; -36559*x^2 + 143281*y^2 + 209122*x*z - 36559*z^2
(101/42275 : -21208/42275 : 1) C1b (31930981/2209910 : 3516583/2209910 : 1)
** u= -121/289 ; tau(u)= 699/410 ; -321559*x^2 + 152401*y^2 + 503242*x*z - 321559*z^2
(4179/149563 : 212534/149563 : 1) C2b (4615787/405278 : -730689/405278 : 1)
** u= 123/2 ; tau(u)= 119/121 ; -14153*x^2 - 15121*y^2 + 29290*x*z - 14153*z^2
(10639/8237 : 550/8237 : 1) C1a (-327959/7767 : 42509/7767 : 1)
** u= -124/421 ; tau(u)= 966/545 ; -578674*x^2 + 339106*y^2 + 948532*x*z - 578674*z^2
(3442/895 : 3601/895 : 1) C2b (-1430515/917611 : 326243/917611 : 1)
** u= 127/153 ; tau(u)= 179/26 ; 14777*x^2 + 30689*y^2 + 48170*x*z + 14777*z^2
(-22699/37949 : 20262/37949 : 1) C1b (-2321121/292255 : -51871/58451 : 1)
** u= -127/169 ; tau(u)= 465/296 ; -159103*x^2 + 40993*y^2 + 232354*x*z - 159103*z^2
(-33/245 : -76/35 : 1) C2b (23035307/4646970 : -4414087/4646970 : 1)
** u= 127/225 ; tau(u)= 323/98 ; -3079*x^2 + 85121*y^2 + 120458*x*z - 3079*z^2
(3439/148531 : 8694/148531 : 1) C1b (6213013/3364845 : -765443/3364845 : 1)
** u= 128/145 ; tau(u)= 162/17 ; 15806*x^2 + 25666*y^2 + 42628*x*z + 15806*z^2
(-3593/1595 : 36/1595 : 1) C1b (-820750/1563129 : -174589/1563129 : 1)
** u= 128/153 ; tau(u)= 178/25 ; 15134*x^2 + 30434*y^2 + 48068*x*z + 15134*z^2
(-3635/9949 : -1152/9949 : 1) C1b (-127770/8632027 : -994111/8632027 : 1)
** u= -128/153 ; tau(u)= 434/281 ; -141538*x^2 + 30434*y^2 + 204740*x*z - 141538*z^2
(-3337/503 : -8016/503 : 1) C2b (1688310/166219 : -376775/166219 : 1)
** u= -128/197 ; tau(u)= 522/325 ; -194866*x^2 + 61234*y^2 + 288868*x*z - 194866*z^2
(719/431 : 880/431 : 1) C2b (5767870/543423 : -1082939/543423 : 1)
** u= -128/405 ; tau(u)= 938/533 ; -551794*x^2 + 311666*y^2 + 896228*x*z - 551794*z^2
(1300/1363 : -1089/1363 : 1) C2b (-3265870/252321 : -534979/252321 : 1)
** u= -131/461 ; tau(u)= 1053/592 ; -683767*x^2 + 407881*y^2 + 1125970*x*z - 683767*z^2
(468161/13489759 : 16970328/13489759 : 1) C2b (-417849/323530 : -20371/64706 : 1)
** u= 132/137 ; tau(u)= 142/5 ; 17374*x^2 + 20114*y^2 + 37588*x*z + 17374*z^2
(-1351/1944 : -259/1944 : 1) C1b (-1090126/331411 : 123573/331411 : 1)
** u= -132/493 ; tau(u)= 1118/625 ; -763826*x^2 + 468674*y^2 + 1267348*x*z - 763826*z^2
(407266/1033809 : -133525/147687 : 1) C2b (23936378/1005895 : -3533829/1005895 : 1)
** u= 133/281 ; tau(u)= 429/148 ; -26119*x^2 + 140233*y^2 + 201730*x*z - 26119*z^2
(9519921/406000763 : 158613800/406000763 : 1) C1b (-11919022/3440655 : -283243/688131 : 1)
** u= -133/349 ; tau(u)= 831/482 ; -446959*x^2 + 225913*y^2 + 708250*x*z - 446959*z^2
(-19589/87523 : 145910/87523 : 1) C2b (77450/295881 : 41435/295881 : 1)
** u= -136/325 ; tau(u)= 786/461 ; -406546*x^2 + 192754*y^2 + 636292*x*z - 406546*z^2
(5661/12101 : 12260/12101 : 1) C2b (10219826/4345845 : 1364729/4345845 : 1)
** u= -137/257 ; tau(u)= 651/394 ; -291703*x^2 + 113329*y^2 + 442570*x*z - 291703*z^2
(34681/36037 : 39470/36037 : 1) C2b (32234501/9683138 : -4886049/9683138 : 1)
** u= 137/397 ; tau(u)= 657/260 ; -116431*x^2 + 296449*y^2 + 450418*x*z - 116431*z^2
(5119775/38421357 : -17064616/38421357 : 1) C1b (-990154/48229 : 113893/48229 : 1)
** u= 138/89 ; tau(u)= -40/49 ; 14242*x^2 - 3202*y^2 + 20644*x*z + 14242*z^2
(-101/710 : 1351/710 : 1) C1a (3663/7175 : 2351/7175 : 1)
** u= 139/197 ; tau(u)= 255/58 ; 12593*x^2 + 58297*y^2 + 84346*x*z + 12593*z^2
(-14107/72105 : -17482/72105 : 1) C1b (14551/2070 : 1661/2070 : 1)
** u= -140/221 ; tau(u)= 582/361 ; -241042*x^2 + 78082*y^2 + 358324*x*z - 241042*z^2
(5/14 : -19/14 : 1) C2b (1349058/209015 : -240259/209015 : 1)
** u= 141/221 ; tau(u)= 301/80 ; 7081*x^2 + 77801*y^2 + 110482*x*z + 7081*z^2
(-3449/12665 : 6808/12665 : 1) C1b (1055122/496835 : 131061/496835 : 1)
** u= 141/461 ; tau(u)= 781/320 ; -184919*x^2 + 405161*y^2 + 629842*x*z - 184919*z^2
(-41855/750287 : 553664/750287 : 1) C1b (555309965/49750549 : 62300787/49750549 : 1)
** u= 142/5 ; tau(u)= 132/137 ; -17374*x^2 - 20114*y^2 + 37588*x*z - 17374*z^2
(4380/3017 : 73/431 : 1) C1a (5660965/77242 : -707961/77242 : 1)
** u= 142/61 ; tau(u)= 20/81 ; 7042*x^2 - 12722*y^2 + 20564*x*z + 7042*z^2
(712/161 : 99/23 : 1) C1a (476226/47489 : 57877/47489 : 1)
** u= -143/149 ; tau(u)= 441/292 ; -150079*x^2 + 23953*y^2 + 214930*x*z - 150079*z^2
(-351/1499 : 4424/1499 : 1) C2b (3844355/2041378 : -779305/2041378 : 1)
** u= 143/193 ; tau(u)= 243/50 ; 15449*x^2 + 54049*y^2 + 79498*x*z + 15449*z^2
(-4889/20855 : 4338/20855 : 1) C1b (1049442/946913 : 172391/946913 : 1)
** u= 145/64 ; tau(u)= 17/81 ; 7903*x^2 - 12833*y^2 + 21314*x*z + 7903*z^2
(3257/12745 : 13248/12745 : 1) C1a (-820750/1563129 : -174589/1563129 : 1)
** u= -145/313 ; tau(u)= 771/458 ; -398503*x^2 + 174913*y^2 + 615466*x*z - 398503*z^2
(579103/818835 : -789362/818835 : 1) C2b (84013410/10288241 : -13425823/10288241 : 1)
** u= 145/353 ; tau(u)= 561/208 ; -65503*x^2 + 228193*y^2 + 335746*x*z - 65503*z^2
(24659/132573 : 141688/928011 : 1) C1b (10640587/6107362 : -8744853/42751534 : 1)
** u= 147/229 ; tau(u)= 311/82 ; 8161*x^2 + 83273*y^2 + 118330*x*z + 8161*z^2
(-53603/442841 : 119290/442841 : 1) C1b (-532994386/7217827 : -58440087/7217827 : 1)
** u= 148/305 ; tau(u)= 462/157 ; -27394*x^2 + 164146*y^2 + 235348*x*z - 27394*z^2
(-952/509 : 943/509 : 1) C1b (158598250/5379367 : 17423193/5379367 : 1)
** u= -149/125 ; tau(u)= 399/274 ; -127951*x^2 + 9049*y^2 + 181402*x*z - 127951*z^2
(-32881/119579 : 544330/119579 : 1) C2b (-13558651/328349 : -5684781/328349 : 1)
** u= 149/181 ; tau(u)= 213/32 ; 20153*x^2 + 43321*y^2 + 67570*x*z + 20153*z^2
(-63077/63853 : -50344/63853 : 1) C1b (61931137/192214 : 7126881/192214 : 1)
** u= -149/477 ; tau(u)= 1103/626 ; -761551*x^2 + 432857*y^2 + 1238810*x*z - 761551*z^2
(2840867/121039967 : 157498878/121039967 : 1) C2b (10645877/2518941 : 1450181/2518941 : 1)
** u= 150/101 ; tau(u)= -52/49 ; 17698*x^2 - 2098*y^2 + 25204*x*z + 17698*z^2
(-207/32 : -539/32 : 1) C1a (-695954/51111 : -210929/51111 : 1)
** u= -151/145 ; tau(u)= 441/296 ; -152431*x^2 + 19249*y^2 + 217282*x*z - 152431*z^2
(15733/101615 : 256284/101615 : 1) C2b (-18219285/1415539 : 5950381/1415539 : 1)
** u= 151/369 ; tau(u)= 587/218 ; -72247*x^2 + 249521*y^2 + 367370*x*z - 72247*z^2
(-85019/4727149 : -379686/675307 : 1) C1b (9485299/542707 : 1049281/542707 : 1)
** u= -152/197 ; tau(u)= 546/349 ; -220498*x^2 + 54514*y^2 + 321220*x*z - 220498*z^2
(36083/46527 : 64264/46527 : 1) C2b (-84482/3206391 : -729599/3206391 : 1)
** u= 152/441 ; tau(u)= 730/289 ; -143938*x^2 + 365858*y^2 + 556004*x*z - 143938*z^2
(-52489/260348 : -220269/260348 : 1) C1b (143400815/37197206 : 15719179/37197206 : 1)
** u= 152/457 ; tau(u)= 762/305 ; -162946*x^2 + 394594*y^2 + 603748*x*z - 162946*z^2
(121556/505485 : -132673/505485 : 1) C1b (17175142/1219015 : -1922931/1219015 : 1)
** u= 153/32 ; tau(u)= 89/121 ; -5873*x^2 - 21361*y^2 + 31330*x*z - 5873*z^2
(20507/37859 : 25080/37859 : 1) C1a (-329287/143399 : 42701/143399 : 1)
** u= 153/64 ; tau(u)= 25/89 ; 7567*x^2 - 15217*y^2 + 24034*x*z + 7567*z^2
(-865/7391 : -4176/7391 : 1) C1a (-127770/8632027 : -994111/8632027 : 1)
** u= -155/269 ; tau(u)= 693/424 ; -335527*x^2 + 120697*y^2 + 504274*x*z - 335527*z^2
(-479/1555 : -3236/1555 : 1) C2b (-365934051/63521054 : 77326187/63521054 : 1)
** u= 156/205 ; tau(u)= 254/49 ; 19534*x^2 + 59714*y^2 + 88852*x*z + 19534*z^2
(-15871/39636 : -18431/39636 : 1) C1b (-152123/47867 : -16743/47867 : 1)
** u= 158/109 ; tau(u)= -60/49 ; 20162*x^2 - 1202*y^2 + 28564*x*z + 20162*z^2
(219/964 : -4627/964 : 1) C1a (-120533/790 : -53841/790 : 1)
** u= -159/181 ; tau(u)= 521/340 ; -205919*x^2 + 40241*y^2 + 296722*x*z - 205919*z^2
(8013/153559 : 47792/21937 : 1) C2b (-50230295/106889558 : -36568899/106889558 : 1)
** u= -160/261 ; tau(u)= 682/421 ; -328882*x^2 + 110642*y^2 + 490724*x*z - 328882*z^2
(-190405/1799483 : 23481576/12596381 : 1) C2b (-3053949/4680710 : -9634169/32764970 : 1)
** u= 160/269 ; tau(u)= 378/109 ; 1838*x^2 + 119122*y^2 + 168484*x*z + 1838*z^2
(-3253/91699 : -17088/91699 : 1) C1b (658709/293410 : 79267/293410 : 1)
** u= -160/457 ; tau(u)= 1074/617 ; -735778*x^2 + 392098*y^2 + 1179076*x*z - 735778*z^2
(-654/53947 : -522337/377629 : 1) C2b (-87081670/19767589 : -112427321/138373123 : 1)
** u= -161/153 ; tau(u)= 467/314 ; -171271*x^2 + 20897*y^2 + 244010*x*z - 171271*z^2
(-28021/1811231 : -5242746/1811231 : 1) C2b (-16745167/932489 : 5477449/932489 : 1)
** u= 161/265 ; tau(u)= 369/104 ; 4289*x^2 + 114529*y^2 + 162082*x*z + 4289*z^2
(-1133995/14181439 : 3896052/14181439 : 1) C1b (13263527/1665282 : 1468723/1665282 : 1)
** u= -161/377 ; tau(u)= 915/538 ; -552967*x^2 + 258337*y^2 + 863146*x*z - 552967*z^2
(2648833/1555053 : 2536126/1555053 : 1) C2b (7117966/13109415 : 1707449/13109415 : 1)
** u= -161/449 ; tau(u)= 1059/610 ; -718279*x^2 + 377281*y^2 + 1147402*x*z - 718279*z^2
(870227/4910715 : -5861426/4910715 : 1) C2b (36881470/676479 : 5853593/676479 : 1)
** u= 162/17 ; tau(u)= 128/145 ; -15806*x^2 - 25666*y^2 + 42628*x*z - 15806*z^2
(823/985 : -576/985 : 1) C1a (81839/74711 : 10441/74711 : 1)
** u= 162/73 ; tau(u)= 16/89 ; 10402*x^2 - 15586*y^2 + 26500*x*z + 10402*z^2
(607/12628 : 1563/1804 : 1) C1a (143171/114675 : 5179/22935 : 1)
** u= -163/325 ; tau(u)= 813/488 ; -449719*x^2 + 184681*y^2 + 687538*x*z - 449719*z^2
(-3025/17741 : 220084/124187 : 1) C2b (46850/3823 : 55259/26761 : 1)
** u= 164/313 ; tau(u)= 462/149 ; -17506*x^2 + 169042*y^2 + 240340*x*z - 17506*z^2
(20802/286817 : 9013/286817 : 1) C1b (113951/108993 : -16667/108993 : 1)
** u= 165/68 ; tau(u)= 29/97 ; 8407*x^2 - 17977*y^2 + 28066*x*z + 8407*z^2
(-531/5897 : -3392/5897 : 1) C1a (-189070/65993 : 20777/65993 : 1)
** u= -165/173 ; tau(u)= 511/338 ; -201263*x^2 + 32633*y^2 + 288346*x*z - 201263*z^2
(15/11 : -26/11 : 1) C2b (-239398/348745 : -148749/348745 : 1)
** u= 166/85 ; tau(u)= -4/81 ; 14434*x^2 - 13106*y^2 + 27572*x*z + 14434*z^2
(5875/922232 : -973719/922232 : 1) C1a (-9928995/5210381 : 1129577/5210381 : 1)
** u= 167/361 ; tau(u)= 555/194 ; -47383*x^2 + 232753*y^2 + 335914*x*z - 47383*z^2
(-12517/13931 : 17974/13931 : 1) C1b (-1808803/3386570 : 448803/3386570 : 1)
** u= 168/317 ; tau(u)= 466/149 ; -16178*x^2 + 172754*y^2 + 245380*x*z - 16178*z^2
(-1431821/3099476 : 2719417/3099476 : 1) C1b (675991/427097 : -85077/427097 : 1)
** u= 169/441 ; tau(u)= 713/272 ; -119407*x^2 + 360401*y^2 + 536930*x*z - 119407*z^2
(203291/931109 : 137592/931109 : 1) C1b (-312265/3967698 : -454915/3967698 : 1)
** u= 171/82 ; tau(u)= 7/89 ; 13399*x^2 - 15793*y^2 + 29290*x*z + 13399*z^2
(65479/50449 : 109194/50449 : 1) C1a (-1460834/279033 : 170009/279033 : 1)
** u= 172/173 ; tau(u)= 174 ; 29582*x^2 + 30274*y^2 + 59860*x*z + 29582*z^2
(-287/264 : 35/264 : 1) C1b (-141815/167686 : 20355/167686 : 1)
** u= 172/317 ; tau(u)= 462/145 ; -12466*x^2 + 171394*y^2 + 243028*x*z - 12466*z^2
(-2 : -127/71 : 1) C1b (-459161/61306 : 3629547/4352726 : 1)
** u= 173/277 ; tau(u)= 381/104 ; 8297*x^2 + 123529*y^2 + 175090*x*z + 8297*z^2
(-20581/72081 : -290756/504567 : 1) C1b (123010/329579 : 274045/2307053 : 1)
** u= 174 ; tau(u)= 172/173 ; -29582*x^2 - 30274*y^2 + 59860*x*z - 29582*z^2
(764/861 : 11/123 : 1) C1a (-2846261/100307 : 375027/100307 : 1)
** u= 174/61 ; tau(u)= 52/113 ; 4738*x^2 - 22834*y^2 + 32980*x*z + 4738*z^2
(-1896/13439 : 8339/94073 : 1) C1a (-569962/10411 : 440319/72877 : 1)
** u= 174/73 ; tau(u)= 28/101 ; 9874*x^2 - 19618*y^2 + 31060*x*z + 9874*z^2
(-7/148 : 97/148 : 1) C1a (37481/28698 : -6251/28698 : 1)
** u= 175/377 ; tau(u)= 579/202 ; -50983*x^2 + 253633*y^2 + 365866*x*z - 50983*z^2
(6353/122289 : -43514/122289 : 1) C1b (33436505/3911489 : -3661767/3911489 : 1)
** u= -176/333 ; tau(u)= 842/509 ; -487186*x^2 + 190802*y^2 + 739940*x*z - 487186*z^2
(-23113/35381 : 87930/35381 : 1) C2b (4713194/2563037 : 650513/2563037 : 1)
** u= 176/349 ; tau(u)= 522/173 ; -28882*x^2 + 212626*y^2 + 303460*x*z - 28882*z^2
(9127/95716 : 2995/95716 : 1) C1b (-2434570/1337847 : -317545/1337847 : 1)
** u= 176/433 ; tau(u)= 690/257 ; -101122*x^2 + 344002*y^2 + 507076*x*z - 101122*z^2
(5905/461962 : -7817/14902 : 1) C1b (6996670/812119 : 769059/812119 : 1)
** u= -176/449 ; tau(u)= 1074/625 ; -750274*x^2 + 372226*y^2 + 1184452*x*z - 750274*z^2
(-14587/365387 : -535250/365387 : 1) C2b (31074714/661381 : -5034857/661381 : 1)
** u= -176/461 ; tau(u)= 1098/637 ; -780562*x^2 + 394066*y^2 + 1236580*x*z - 780562*z^2
(7481/1003 : -9450/1003 : 1) C2b (-43352641/25300902 : -10189631/25300902 : 1)
** u= 176/493 ; tau(u)= 810/317 ; -170002*x^2 + 455122*y^2 + 687076*x*z - 170002*z^2
(66440/2296231 : -188487/328033 : 1) C1b (5358522/5916845 : 783913/5916845 : 1)
** u= 178/25 ; tau(u)= 128/153 ; -15134*x^2 - 30434*y^2 + 48068*x*z - 15134*z^2
(194/103 : 87/103 : 1) C1a (-2169130/2189029 : 408823/2189029 : 1)
** u= 179/26 ; tau(u)= 127/153 ; -14777*x^2 - 30689*y^2 + 48170*x*z - 14777*z^2
(1639/4541 : 678/4541 : 1) C1a (-132714787/16771491 : 16006097/16771491 : 1)
** u= 179/205 ; tau(u)= 231/26 ; 30689*x^2 + 52009*y^2 + 85402*x*z + 30689*z^2
(-29705/26791 : -19042/26791 : 1) C1b (1684039/448950 : -223229/448950 : 1)
** u= -179/257 ; tau(u)= 693/436 ; -348151*x^2 + 100057*y^2 + 512290*x*z - 348151*z^2
(110479/39089 : -160236/39089 : 1) C2b (772568358/38870389 : 155538349/38870389 : 1)
** u= 181/185 ; tau(u)= 189/4 ; 32729*x^2 + 35689*y^2 + 68482*x*z + 32729*z^2
(-1613/2085 : -284/2085 : 1) C1b (-10459/2926 : -1201/2926 : 1)
** u= 181/245 ; tau(u)= 309/64 ; 24569*x^2 + 87289*y^2 + 128242*x*z + 24569*z^2
(-57623/150375 : 73696/150375 : 1) C1b (7387/793330 : -88683/793330 : 1)
** u= 181/477 ; tau(u)= 773/296 ; -142471*x^2 + 422297*y^2 + 630290*x*z - 142471*z^2
(-63581/306961 : -249564/306961 : 1) C1b (14270078/11054561 : 1794253/11054561 : 1)
** u= 182/121 ; tau(u)= -60/61 ; 25682*x^2 - 3842*y^2 + 36724*x*z + 25682*z^2
(2120/8643 : 26543/8643 : 1) C1a (534230/57131 : 163833/57131 : 1)
** u= -183/365 ; tau(u)= 913/548 ; -567119*x^2 + 232961*y^2 + 867058*x*z - 567119*z^2
(-23970607/253536591 : -60693812/36219513 : 1) C2b (15780455/22410031 : -3017199/22410031 : 1)
** u= 184/293 ; tau(u)= 402/109 ; 10094*x^2 + 137842*y^2 + 195460*x*z + 10094*z^2
(-227/517 : 15508/21197 : 1) C1b (-306629/128805 : 293395/1056201 : 1)
** u= 185/289 ; tau(u)= 393/104 ; 12593*x^2 + 132817*y^2 + 188674*x*z + 12593*z^2
(-43103/95379 : 69292/95379 : 1) C1b (-280878965/12140458 : -30758031/12140458 : 1)
** u= 185/441 ; tau(u)= 697/256 ; -96847*x^2 + 354737*y^2 + 520034*x*z - 96847*z^2
(1987/118621 : -59136/118621 : 1) C1b (5990650/5276031 : 803383/5276031 : 1)
** u= -187/169 ; tau(u)= 525/356 ; -218503*x^2 + 22153*y^2 + 310594*x*z - 218503*z^2
(36403/54837 : -121420/54837 : 1) C2b (49263666/6235055 : 15544361/6235055 : 1)
** u= 187/317 ; tau(u)= 447/130 ; 1169*x^2 + 166009*y^2 + 234778*x*z + 1169*z^2
(-5809805/3954907 : -5669894/3954907 : 1) C1b (-16937515/4401253 : -1913521/4401253 : 1)
** u= -187/405 ; tau(u)= 997/592 ; -665959*x^2 + 293081*y^2 + 1028978*x*z - 665959*z^2
(366521/6221039 : 8957664/6221039 : 1) C2b (3107678354/1014522095 : -443337149/1014522095 : 1)
** u= 188/445 ; tau(u)= 702/257 ; -96754*x^2 + 360706*y^2 + 528148*x*z - 96754*z^2
(26/137 : -59/14111 : 1) C1b (21310/1373 : 242111/141419 : 1)
** u= 189/4 ; tau(u)= 181/185 ; -32729*x^2 - 35689*y^2 + 68482*x*z - 32729*z^2
(4897/6601 : 12/287 : 1) C1a (5868086/6344955 : -797429/6344955 : 1)
** u= 189/80 ; tau(u)= 29/109 ; 11959*x^2 - 22921*y^2 + 36562*x*z + 11959*z^2
(643/17539 : -13368/17539 : 1) C1a (-155602/152475 : 20779/152475 : 1)
** u= 191/441 ; tau(u)= 691/250 ; -88519*x^2 + 352481*y^2 + 513962*x*z - 88519*z^2
(-391459/2087129 : -1524390/2087129 : 1) C1b (152384950/198771451 : -25421317/198771451 : 1)
** u= 192/373 ; tau(u)= 554/181 ; -28658*x^2 + 241394*y^2 + 343780*x*z - 28658*z^2
(740749/83577161 : 27224332/83577161 : 1) C1b (1050095/1059694 : -156915/1059694 : 1)
** u= 193/261 ; tau(u)= 329/68 ; 28001*x^2 + 98993*y^2 + 145490*x*z + 28001*z^2
(-45557/169153 : 51432/169153 : 1) C1b (7402129/2248182 : -908387/2248182 : 1)
** u= 195/293 ; tau(u)= 391/98 ; 18817*x^2 + 133673*y^2 + 190906*x*z + 18817*z^2
(-33725/40263 : -39382/40263 : 1) C1b (297145/268481 : 46167/268481 : 1)
** u= -196/205 ; tau(u)= 606/401 ; -283186*x^2 + 45634*y^2 + 405652*x*z - 283186*z^2
(349106/1867959 : 4075841/1867959 : 1) C2b (212146/448335 : -92351/448335 : 1)
** u= -196/445 ; tau(u)= 1086/641 ; -783346*x^2 + 357634*y^2 + 1217812*x*z - 783346*z^2
(301779/1917260 : 2506147/1917260 : 1) C2b (-69304275/946987 : 11877187/946987 : 1)
** u= 197/277 ; tau(u)= 357/80 ; 26009*x^2 + 114649*y^2 + 166258*x*z + 26009*z^2
(-44905/22929 : -30272/22929 : 1) C1b (823159/145690 : -111/170 : 1)
** u= 198/61 ; tau(u)= 76/137 ; 1666*x^2 - 31762*y^2 + 44980*x*z + 1666*z^2
(5636/12791 : 10599/12791 : 1) C1a (42274/19897 : -5191/19897 : 1)
** u= 199/305 ; tau(u)= 411/106 ; 17129*x^2 + 146449*y^2 + 208522*x*z + 17129*z^2
(-17759/130033 : 35686/130033 : 1) C1b (-113749190/802937 : 12488173/802937 : 1)
** u= 199/369 ; tau(u)= 539/170 ; -18199*x^2 + 232721*y^2 + 330122*x*z - 18199*z^2
(47351/10278167 : -2751546/10278167 : 1) C1b (-99194/1075 : -10883/1075 : 1)
** u= -199/481 ; tau(u)= 1161/680 ; -885199*x^2 + 423121*y^2 + 1387522*x*z - 885199*z^2
(156611/224425 : -203532/224425 : 1) C2b (-105964211/75289965 : -27431087/75289965 : 1)
** u= 200/481 ; tau(u)= 762/281 ; -117922*x^2 + 422722*y^2 + 620644*x*z - 117922*z^2
(-351377/270723 : 441080/270723 : 1) C1b (-341244390/19587437 : 38539219/19587437 : 1)
** u= 203/333 ; tau(u)= 463/130 ; 7409*x^2 + 180569*y^2 + 255578*x*z + 7409*z^2
(-85841/2957875 : 9678/2957875 : 1) C1b (-35765630/1043409 : -230321/61377 : 1)
** u= 203/445 ; tau(u)= 687/242 ; -75919*x^2 + 354841*y^2 + 513178*x*z - 75919*z^2
(-29/7 : 22/7 : 1) C1b (74182350/7112939 : 8133401/7112939 : 1)
** u= 204/293 ; tau(u)= 382/89 ; 25774*x^2 + 130082*y^2 + 187540*x*z + 25774*z^2
(-632/1067 : 817/1067 : 1) C1b (-278498/946901 : 104961/946901 : 1)
** u= -204/481 ; tau(u)= 1166/685 ; -896834*x^2 + 421106*y^2 + 1401172*x*z - 896834*z^2
(594/1469 : 10943/10283 : 1) C2b (5704606/1745 : 6704211/12215 : 1)
** u= 208/293 ; tau(u)= 378/85 ; 28814*x^2 + 128434*y^2 + 186148*x*z + 28814*z^2
(-9527/3908 : -5493/3908 : 1) C1b (2215633/343727 : -254251/343727 : 1)
** u= -208/421 ; tau(u)= 1050/629 ; -748018*x^2 + 311218*y^2 + 1145764*x*z - 748018*z^2
(106524/5801 : -158365/5801 : 1) C2b (-89916470/1754009 : -16086281/1754009 : 1)
** u= -209/377 ; tau(u)= 963/586 ; -643111*x^2 + 240577*y^2 + 971050*x*z - 643111*z^2
(753229/4579481 : 6607206/4579481 : 1) C2b (986601/869273 : -142427/869273 : 1)
** u= 209/421 ; tau(u)= 633/212 ; -46207*x^2 + 310801*y^2 + 444370*x*z - 46207*z^2
(52963/745749 : 3980/18189 : 1) C1b (-2661042/2405689 : 414793/2405689 : 1)
** u= -212/197 ; tau(u)= 606/409 ; -289618*x^2 + 32674*y^2 + 412180*x*z - 289618*z^2
(-29/214 : 21737/6634 : 1) C2b (-835/4283 : 49725/132773 : 1)
** u= -212/281 ; tau(u)= 774/493 ; -441154*x^2 + 112978*y^2 + 644020*x*z - 441154*z^2
(-10417/123362 : -259177/123362 : 1) C2b (-39039157/11096770 : 2080811/2219354 : 1)
** u= 212/481 ; tau(u)= 750/269 ; -99778*x^2 + 417778*y^2 + 607444*x*z - 99778*z^2
(18611/152894 : -5585/21842 : 1) C1b (114732421/396182619 : 43729369/396182619 : 1)
** u= 213/32 ; tau(u)= 149/181 ; -20153*x^2 - 43321*y^2 + 67570*x*z - 20153*z^2
(109311/184631 : -100312/184631 : 1) C1a (328409362/28114181 : -36922491/28114181 : 1)
** u= 213/68 ; tau(u)= 77/145 ; 3319*x^2 - 36121*y^2 + 51298*x*z + 3319*z^2
(1919/23763 : -10816/23763 : 1) C1a (492622/162503 : -57993/162503 : 1)
** u= 213/116 ; tau(u)= -19/97 ; 26551*x^2 - 18457*y^2 + 45730*x*z + 26551*z^2
(-239/369 : -244/369 : 1) C1a (-19972082/210671 : 2876409/210671 : 1)
** u= 213/221 ; tau(u)= 229/8 ; 45241*x^2 + 52313*y^2 + 97810*x*z + 45241*z^2
(-35569/31141 : -11756/31141 : 1) C1b (-114360638/23646191 : 13283379/23646191 : 1)
** u= -213/493 ; tau(u)= 1199/706 ; -951503*x^2 + 440729*y^2 + 1482970*x*z - 951503*z^2
(10264831/16659299 : -15850958/16659299 : 1) C2b (1329010/997493 : 173865/997493 : 1)
** u= 215/337 ; tau(u)= 459/122 ; 16457*x^2 + 180913*y^2 + 256906*x*z + 16457*z^2
(-47839/3229 : -3198/3229 : 1) C1b (-304553/197735 : 38651/197735 : 1)
** u= 217/365 ; tau(u)= 513/148 ; 3281*x^2 + 219361*y^2 + 310258*x*z + 3281*z^2
(-2989/180337 : 16608/180337 : 1) C1b (386245/763134 : 94039/763134 : 1)
** u= 219/277 ; tau(u)= 335/58 ; 41233*x^2 + 105497*y^2 + 160186*x*z + 41233*z^2
(-191/113 : 814/791 : 1) C1b (9980183/1109782 : -8195979/7768474 : 1)
** u= -220/289 ; tau(u)= 798/509 ; -469762*x^2 + 118642*y^2 + 685204*x*z - 469762*z^2
(43410/55021 : -75191/55021 : 1) C2b (-3897809/2648401 : -1334043/2648401 : 1)
** u= 220/333 ; tau(u)= 446/113 ; 22862*x^2 + 173378*y^2 + 247316*x*z + 22862*z^2
(-64712/598135 : 86517/598135 : 1) C1b (2902999/30505 : 319507/30505 : 1)
** u= -221/269 ; tau(u)= 759/490 ; -431359*x^2 + 95881*y^2 + 624922*x*z - 431359*z^2
(16579/214407 : 429982/214407 : 1) C2b (16585291/3213934 : 3420447/3213934 : 1)
** u= -221/365 ; tau(u)= 951/586 ; -637951*x^2 + 217609*y^2 + 953242*x*z - 637951*z^2
(-56559/141649 : -2249762/991543 : 1) C2b (2717518/14655 : 3651959/102585 : 1)
** u= 222/65 ; tau(u)= 92/157 ; -14*x^2 - 40834*y^2 + 57748*x*z - 14*z^2
(113/1992 : -563/1992 : 1) C1a (-33851/29650 : 4927/29650 : 1)
** u= -223/169 ; tau(u)= 561/392 ; -257599*x^2 + 7393*y^2 + 364450*x*z - 257599*z^2
(39033/65267 : -275548/65267 : 1) C2b (-144194/118725 : 31423/23745 : 1)
** u= -223/405 ; tau(u)= 1033/628 ; -739039*x^2 + 278321*y^2 + 1116818*x*z - 739039*z^2
(-23082143/40409095 : -97434036/40409095 : 1) C2b (-3422470/3742151 : -1204549/3742151 : 1)
** u= 224/277 ; tau(u)= 330/53 ; 44558*x^2 + 103282*y^2 + 159076*x*z + 44558*z^2
(-4943/7425 : 4712/7425 : 1) C1b (239290/132889 : -34791/132889 : 1)
** u= 224/409 ; tau(u)= 594/185 ; -18274*x^2 + 284386*y^2 + 403012*x*z - 18274*z^2
(-626753/6431 : -175944/6431 : 1) C1b (-936229218/449830055 : -115825189/449830055 : 1)
** u= -224/477 ; tau(u)= 1178/701 ; -932626*x^2 + 404882*y^2 + 1437860*x*z - 932626*z^2
(-100159/500531 : 882174/500531 : 1) C2b (39552027/1049485 : 1348975/209897 : 1)
** u= -227/401 ; tau(u)= 1029/628 ; -737239*x^2 + 270073*y^2 + 1110370*x*z - 737239*z^2
(5049981/6846911 : 7445144/6846911 : 1) C2b (9485182/1796181 : -1568071/1796181 : 1)
** u= 229/8 ; tau(u)= 213/221 ; -45241*x^2 - 52313*y^2 + 97810*x*z - 45241*z^2
(35569/31141 : 11756/31141 : 1) C1a (628835/149342 : -72405/149342 : 1)
** u= -229/349 ; tau(u)= 927/578 ; -615727*x^2 + 191161*y^2 + 911770*x*z - 615727*z^2
(-109721/113767 : -374170/113767 : 1) C2b (53892661/2259402 : -10533637/2259402 : 1)
** u= 230/109 ; tau(u)= 12/121 ; 23618*x^2 - 29138*y^2 + 53044*x*z + 23618*z^2
(-2180/4479 : -1529/4479 : 1) C1a (-980659/105581 : -116559/105581 : 1)
** u= 231/26 ; tau(u)= 179/205 ; -30689*x^2 - 52009*y^2 + 85402*x*z - 30689*z^2
(7015/6621 : 4622/6621 : 1) C1a (-602115/86198 : 75283/86198 : 1)
** u= 231/146 ; tau(u)= -61/85 ; 38911*x^2 - 10729*y^2 + 57082*x*z + 38911*z^2
(-2693/22289 : 38842/22289 : 1) C1a (-867986/151121 : 164121/151121 : 1)
** u= 232/245 ; tau(u)= 258/13 ; 53486*x^2 + 66226*y^2 + 120388*x*z + 53486*z^2
(-4439/6229 : -1736/6229 : 1) C1b (2754239/655729 : 384979/655729 : 1)
** u= -232/441 ; tau(u)= 1114/673 ; -852034*x^2 + 335138*y^2 + 1294820*x*z - 852034*z^2
(-251051/51517 : 465780/51517 : 1) C2b (-49587445285/3808926221 : 9440510395/3808926221 : 1)
** u= 234/145 ; tau(u)= -56/89 ; 38914*x^2 - 12706*y^2 + 57892*x*z + 38914*z^2
(-15901/152585 : -247032/152585 : 1) C1a (-6833/14415 : 2171/14415 : 1)
** u= -235/441 ; tau(u)= 1117/676 ; -858727*x^2 + 333737*y^2 + 1302914*x*z - 858727*z^2
(79379/61697 : 82992/61697 : 1) C2b (-44357754/2118241 : 8327323/2118241 : 1)
** u= 237/164 ; tau(u)= -91/73 ; 45511*x^2 - 2377*y^2 + 64450*x*z + 45511*z^2
(-4703/21897 : -82532/21897 : 1) C1a (536066/62253 : -278839/62253 : 1)
** u= 237/241 ; tau(u)= 245/4 ; 56137*x^2 + 59993*y^2 + 116194*x*z + 56137*z^2
(-1529/1953 : -164/1953 : 1) C1b (3456321610/167198639 : -453544179/167198639 : 1)
** u= 237/337 ; tau(u)= 437/100 ; 36169*x^2 + 170969*y^2 + 247138*x*z + 36169*z^2
(-18991/125235 : -6608/125235 : 1) C1b (26525143/910895 : -2952249/910895 : 1)
** u= -239/389 ; tau(u)= 1017/628 ; -731647*x^2 + 245521*y^2 + 1091410*x*z - 731647*z^2
(568843/2012513 : -2818656/2012513 : 1) C2b (3011861/5734797 : 841597/5734797 : 1)
** u= 240/257 ; tau(u)= 274/17 ; 57022*x^2 + 74498*y^2 + 132676*x*z + 57022*z^2
(-118/205 : -3091/39565 : 1) C1b (41837/2002 : -1013283/386386 : 1)
** u= 241/401 ; tau(u)= 561/160 ; 6881*x^2 + 263521*y^2 + 372802*x*z + 6881*z^2
(-141041/3361305 : 612488/3361305 : 1) C1b (655379/719475 : -2029/13575 : 1)
** u= 241/441 ; tau(u)= 641/200 ; -21919*x^2 + 330881*y^2 + 468962*x*z - 21919*z^2
(-6745/10259861 : -2659188/10259861 : 1) C1b (-590442971/8835310 : -64762253/8835310 : 1)
** u= 242/89 ; tau(u)= 64/153 ; 11746*x^2 - 42722*y^2 + 62660*x*z + 11746*z^2
(743/1447 : 1518/1447 : 1) C1a (-68238/3199 : -7549/3199 : 1)
** u= 243/50 ; tau(u)= 143/193 ; -15449*x^2 - 54049*y^2 + 79498*x*z - 15449*z^2
(14609/19379 : -15750/19379 : 1) C1a (-1970023/272175 : -227809/272175 : 1)
** u= 243/98 ; tau(u)= 47/145 ; 16999*x^2 - 39841*y^2 + 61258*x*z + 16999*z^2
(-335/1471 : -462/1471 : 1) C1a (2331669/448915 : 284669/448915 : 1)
** u= 244/281 ; tau(u)= 318/37 ; 56798*x^2 + 98386*y^2 + 160660*x*z + 56798*z^2
(-32472/50317 : -24449/50317 : 1) C1b (-9205/458 : -1065/458 : 1)
** u= -244/441 ; tau(u)= 1126/685 ; -878914*x^2 + 329426*y^2 + 1327412*x*z - 878914*z^2
(76400/32321 : 91707/32321 : 1) C2b (14939778/5330575 : 2234009/5330575 : 1)
** u= 245/4 ; tau(u)= 237/241 ; -56137*x^2 - 59993*y^2 + 116194*x*z - 56137*z^2
(437/465 : -112/465 : 1) C1a (-1722317/572653 : 264033/572653 : 1)
** u= 247/257 ; tau(u)= 267/10 ; 60809*x^2 + 71089*y^2 + 132298*x*z + 60809*z^2
(-175571/159949 : 63326/159949 : 1) C1b (-93641774/8553365 : 11306503/8553365 : 1)
** u= -249/265 ; tau(u)= 779/514 ; -466391*x^2 + 78449*y^2 + 668842*x*z - 466391*z^2
(-20191/7305 : -442634/51135 : 1) C2b (97438/121403 : 165489/849821 : 1)
** u= 250/97 ; tau(u)= 56/153 ; 15682*x^2 - 43682*y^2 + 65636*x*z + 15682*z^2
(134/439 : -405/439 : 1) C1a (-1139932042/111605545 : -126219413/111605545 : 1)
** u= 250/169 ; tau(u)= -88/81 ; 49378*x^2 - 5378*y^2 + 70244*x*z + 49378*z^2
(-17081/33749 : 74880/33749 : 1) C1a (-2341050/106477 : 754387/106477 : 1)
** u= 253/136 ; tau(u)= -19/117 ; 36631*x^2 - 27017*y^2 + 64370*x*z + 36631*z^2
(36647/109987 : -166812/109987 : 1) C1a (-18176790/21357049 : -2638135/21357049 : 1)
** u= -253/477 ; tau(u)= 1207/730 ; -1001791*x^2 + 391049*y^2 + 1520858*x*z - 1001791*z^2
(-2150411/62830645 : 103201398/62830645 : 1) C2b (-14023626/8934695 : -3814883/8934695 : 1)
** u= 254/49 ; tau(u)= 156/205 ; -19534*x^2 - 59714*y^2 + 88852*x*z - 19534*z^2
(16126/67387 : -6811/67387 : 1) C1a (-379630/119801 : -47439/119801 : 1)
** u= 255/58 ; tau(u)= 139/197 ; -12593*x^2 - 58297*y^2 + 84346*x*z - 12593*z^2
(19549/8943 : -12374/8943 : 1) C1a (5667173/750470 : 620587/750470 : 1)
** u= 255/146 ; tau(u)= -37/109 ; 41263*x^2 - 22393*y^2 + 66394*x*z + 41263*z^2
(-7335/3859 : 45718/27013 : 1) C1a (2048053/814278 : 2921099/5699946 : 1)
** u= -255/401 ; tau(u)= 1057/656 ; -795647*x^2 + 256577*y^2 + 1182274*x*z - 795647*z^2
(-129569/48233 : 296768/48233 : 1) C2b (-479345/688442 : -211719/688442 : 1)
** u= 255/481 ; tau(u)= 707/226 ; -37127*x^2 + 397697*y^2 + 564874*x*z - 37127*z^2
(-123/569 : 362/569 : 1) C1b (-6412703749/3071425390 : 799819503/3071425390 : 1)
** u= 257/421 ; tau(u)= 585/164 ; 12257*x^2 + 288433*y^2 + 408274*x*z + 12257*z^2
(-7551407/1684991 : -561828/240713 : 1) C1b (-704133/275018 : -81947/275018 : 1)
** u= -257/441 ; tau(u)= 1139/698 ; -908359*x^2 + 322913*y^2 + 1363370*x*z - 908359*z^2
(-212507/1353169 : -2547930/1353169 : 1) C2b (529590879/16083487 : -98175227/16083487 : 1)
** u= 258/13 ; tau(u)= 232/245 ; -53486*x^2 - 66226*y^2 + 120388*x*z - 53486*z^2
(332480/216061 : 60053/216061 : 1) C1a (-869105/225903 : 122923/225903 : 1)
** u= -259/369 ; tau(u)= 997/628 ; -721687*x^2 + 205241*y^2 + 1061090*x*z - 721687*z^2
(-201913/1457429 : 3022200/1457429 : 1) C2b (188836338/65125355 : 6372541/13025071 : 1)
** u= 262/145 ; tau(u)= -28/117 ; 41266*x^2 - 26594*y^2 + 69428*x*z + 41266*z^2
(-8456/3053 : -7617/3053 : 1) C1a (-26515/12141 : -3217/12141 : 1)
** u= -264/257 ; tau(u)= 778/521 ; -473186*x^2 + 62402*y^2 + 674980*x*z - 473186*z^2
(-67631/357377 : -1124540/357377 : 1) C2b (382402/1187129 : -290247/1187129 : 1)
** u= 266/185 ; tau(u)= -104/81 ; 57634*x^2 - 2306*y^2 + 81572*x*z + 57634*z^2
(1015/37217 : 189684/37217 : 1) C1a (1677237/751382 : 1243549/751382 : 1)
** u= 267/10 ; tau(u)= 247/257 ; -60809*x^2 - 71089*y^2 + 132298*x*z - 60809*z^2
(2467/3033 : 922/3033 : 1) C1a (317925/467011 : -53677/467011 : 1)
** u= 267/74 ; tau(u)= 119/193 ; -3209*x^2 - 60337*y^2 + 85450*x*z - 3209*z^2
(26489/153951 : 66914/153951 : 1) C1a (-84325/86309 : -13465/86309 : 1)
** u= -268/277 ; tau(u)= 822/545 ; -522226*x^2 + 81634*y^2 + 747508*x*z - 522226*z^2
(784/727 : -70907/35623 : 1) C2b (-1316695/1166919 : 31252523/57179031 : 1)
** u= -268/349 ; tau(u)= 966/617 ; -689554*x^2 + 171778*y^2 + 1004980*x*z - 689554*z^2
(-560887/3796608 : 8460677/3796608 : 1) C2b (35288393/1433230 : -1528417/286646 : 1)
** u= -268/373 ; tau(u)= 1014/641 ; -749938*x^2 + 206434*y^2 + 1100020*x*z - 749938*z^2
(-786/7871 : 949/463 : 1) C2b (47107298/157827899 : -27700173/157827899 : 1)
** u= -268/441 ; tau(u)= 1150/709 ; -933538*x^2 + 317138*y^2 + 1394324*x*z - 933538*z^2
(-11542/16283 : 44709/16283 : 1) C2b (-1337965/949802 : -404617/949802 : 1)
** u= -268/477 ; tau(u)= 1222/745 ; -1038226*x^2 + 383234*y^2 + 1565108*x*z - 1038226*z^2
(7489/102670 : 159903/102670 : 1) C2b (12049950/2226901 : -1991197/2226901 : 1)
** u= -269/365 ; tau(u)= 999/634 ; -731551*x^2 + 194089*y^2 + 1070362*x*z - 731551*z^2
(93/1565 : 20362/10955 : 1) C2b (-534291802/98432563 : -916815331/689027941 : 1)
** u= 269/369 ; tau(u)= 469/100 ; 52361*x^2 + 199961*y^2 + 292322*x*z + 52361*z^2
(-328463/60883 : -3600/60883 : 1) C1b (686547/263890 : -86639/263890 : 1)
** u= 271/146 ; tau(u)= -21/125 ; 42191*x^2 - 30809*y^2 + 73882*x*z + 42191*z^2
(-73433/171973 : -132670/171973 : 1) C1a (2951675/297026 : 446319/297026 : 1)
** u= 271/449 ; tau(u)= 627/178 ; 10073*x^2 + 329761*y^2 + 466570*x*z + 10073*z^2
(-22359/214909 : 73298/214909 : 1) C1b (-1049129766/488881045 : 25137857/97776209 : 1)
** u= 274/17 ; tau(u)= 240/257 ; -57022*x^2 - 74498*y^2 + 132676*x*z - 57022*z^2
(17/29 : -698/5597 : 1) C1a (34241/20534 : -745929/3963062 : 1)
** u= 275/349 ; tau(u)= 423/74 ; 64673*x^2 + 167977*y^2 + 254554*x*z + 64673*z^2
(-299667/81953 : 7510/81953 : 1) C1b (1339000426/70223081 : -153955997/70223081 : 1)
** u= 276/401 ; tau(u)= 526/125 ; 44926*x^2 + 245426*y^2 + 352852*x*z + 44926*z^2
(-3277/4642 : 3995/4642 : 1) C1b (119050/13499 : 549903/553459 : 1)
** u= 277/317 ; tau(u)= 357/40 ; 73529*x^2 + 124249*y^2 + 204178*x*z + 73529*z^2
(-149961/216085 : -110948/216085 : 1) C1b (113836050/59631127 : 17264779/59631127 : 1)
** u= 277/425 ; tau(u)= 573/148 ; 32921*x^2 + 284521*y^2 + 405058*x*z + 32921*z^2
(-14743/75651 : 30008/75651 : 1) C1b (-1063704829/40689835 : 116559221/40689835 : 1)
** u= 277/441 ; tau(u)= 605/164 ; 22937*x^2 + 312233*y^2 + 442754*x*z + 22937*z^2
(-131003/2521171 : -12012/2521171 : 1) C1b (-302977910/18191827 : 33169813/18191827 : 1)
** u= 279/98 ; tau(u)= 83/181 ; 12319*x^2 - 58633*y^2 + 84730*x*z + 12319*z^2
(-1753/12513 : -14/129 : 1) C1a (-13970001/1225913 : 1532143/1225913 : 1)
** u= -280/333 ; tau(u)= 946/613 ; -673138*x^2 + 143378*y^2 + 973316*x*z - 673138*z^2
(8629/9625 : 14856/9625 : 1) C2b (2553725/3291051 : 574027/3291051 : 1)
** u= 280/377 ; tau(u)= 474/97 ; 59582*x^2 + 205858*y^2 + 303076*x*z + 59582*z^2
(-77639/160113 : 95588/160113 : 1) C1b (-5376747/206210 : 35087/12130 : 1)
** u= 280/449 ; tau(u)= 618/169 ; 21278*x^2 + 324802*y^2 + 460324*x*z + 21278*z^2
(-4109/2187 : -3364/2187 : 1) C1b (640035/422621 : -85823/422621 : 1)
** u= -280/481 ; tau(u)= 1242/761 ; -1079842*x^2 + 384322*y^2 + 1620964*x*z - 1079842*z^2
(-118529/3307739 : -5695152/3307739 : 1) C2b (6429887/23686417 : -3778691/23686417 : 1)
** u= -283/313 ; tau(u)= 909/596 ; -630343*x^2 + 115849*y^2 + 906370*x*z - 630343*z^2
(236359/18217 : -521620/18217 : 1) C2b (-1672094234/306851477 : -488810867/306851477 : 1)
** u= 283/317 ; tau(u)= 351/34 ; 77777*x^2 + 120889*y^2 + 203290*x*z + 77777*z^2
(-127199/158201 : 85602/158201 : 1) C1b (-68287/33921 : -7589/33921 : 1)
** u= 283/333 ; tau(u)= 383/50 ; 75089*x^2 + 141689*y^2 + 226778*x*z + 75089*z^2
(-29983/43937 : -24678/43937 : 1) C1b (431343/2007127 : -254839/2007127 : 1)
** u= -284/425 ; tau(u)= 1134/709 ; -924706*x^2 + 280594*y^2 + 1366612*x*z - 924706*z^2
(13072/7517 : -16455/7517 : 1) C2b (28354826/1334911 : -5580689/1334911 : 1)
** u= -287/233 ; tau(u)= 753/520 ; -458431*x^2 + 26209*y^2 + 649378*x*z - 458431*z^2
(10335/9653 : -32036/9653 : 1) C2b (-297630630/5565223 : 138195071/5565223 : 1)
** u= -287/293 ; tau(u)= 873/580 ; -590431*x^2 + 89329*y^2 + 844498*x*z - 590431*z^2
(-231679/23431407 : -60667636/23431407 : 1) C2b (403369/1314105 : 303323/1314105 : 1)
** u= 287/313 ; tau(u)= 339/26 ; 81017*x^2 + 113569*y^2 + 197290*x*z + 81017*z^2
(-81/43 : -2410/14491 : 1) C1b (-71/82 : -3417/27634 : 1)
** u= 291/178 ; tau(u)= -65/113 ; 59143*x^2 - 21313*y^2 + 88906*x*z + 59143*z^2
(-16669/25021 : 27722/25021 : 1) C1a (-36710/21687 : 5179/21687 : 1)
** u= -292/337 ; tau(u)= 966/629 ; -706018*x^2 + 141874*y^2 + 1018420*x*z - 706018*z^2
(83048/76763 : 133729/76763 : 1) C2b (412918338/108820739 : -85455233/108820739 : 1)
** u= -292/349 ; tau(u)= 990/641 ; -736498*x^2 + 158338*y^2 + 1065364*x*z - 736498*z^2
(4204667/2736232 : -6296721/2736232 : 1) C2b (1347985/504167 : -254017/504167 : 1)
** u= -292/405 ; tau(u)= 1102/697 ; -886354*x^2 + 242786*y^2 + 1299668*x*z - 886354*z^2
(9994/128083 : 231093/128083 : 1) C2b (7553678/791913 : 1498927/791913 : 1)
** u= -292/433 ; tau(u)= 1158/725 ; -965986*x^2 + 289714*y^2 + 1426228*x*z - 965986*z^2
(-14355/340226 : 640847/340226 : 1) C2b (8766007/5009785 : -1330821/5009785 : 1)
** u= 293/493 ; tau(u)= 693/200 ; 5849*x^2 + 400249*y^2 + 566098*x*z + 5849*z^2
(-5483/328447 : 31148/328447 : 1) C1b (15195975307/844134858 : 1667192129/844134858 : 1)
** u= 294/169 ; tau(u)= -44/125 ; 55186*x^2 - 29314*y^2 + 88372*x*z + 55186*z^2
(-3364/4609 : -3815/4609 : 1) C1a (-11706/123011 : 18551/123011 : 1)
** u= 294/205 ; tau(u)= -116/89 ; 70594*x^2 - 2386*y^2 + 99892*x*z + 70594*z^2
(919/22836 : 127799/22836 : 1) C1a (-4202/5535 : 2339/5535 : 1)
** u= -296/281 ; tau(u)= 858/577 ; -578242*x^2 + 70306*y^2 + 823780*x*z - 578242*z^2
(58398/388163 : -1000829/388163 : 1) C2b (-9067062/1132921 : 3118139/1132921 : 1)
** u= 296/369 ; tau(u)= 442/73 ; 76958*x^2 + 184706*y^2 + 282980*x*z + 76958*z^2
(-1843471/3318494 : 1835253/3318494 : 1) C1b (33774661/12648258 : 4461449/12648258 : 1)
** u= 299/146 ; tau(u)= 7/153 ; 42583*x^2 - 46769*y^2 + 89450*x*z + 42583*z^2
(36949/125819 : -156678/125819 : 1) C1a (-9580954/3547113 : -1080427/3547113 : 1)
** u= -299/245 ; tau(u)= 789/544 ; -502471*x^2 + 30649*y^2 + 711922*x*z - 502471*z^2
(96867/91253 : -291592/91253 : 1) C2b (10546639/398655 : 4556189/398655 : 1)
** u= 300/493 ; tau(u)= 686/193 ; 15502*x^2 + 396098*y^2 + 560596*x*z + 15502*z^2
(-913/10882 : 3065/10882 : 1) C1b (16492534/4388489 : 1881867/4388489 : 1)
** u= 301/80 ; tau(u)= 141/221 ; -7081*x^2 - 77801*y^2 + 110482*x*z - 7081*z^2
(1301/15605 : -2552/15605 : 1) C1a (17334715/1596853 : 1898481/1596853 : 1)
** u= 301/116 ; tau(u)= 69/185 ; 22151*x^2 - 63689*y^2 + 95362*x*z + 22151*z^2
(8721/20753 : -21148/20753 : 1) C1a (267190/6350203 : -722907/6350203 : 1)
** u= 301/401 ; tau(u)= 501/100 ; 70601*x^2 + 231001*y^2 + 341602*x*z + 70601*z^2
(-136471/103871 : -109420/103871 : 1) C1b (-1014919/955734 : -139037/955734 : 1)
** u= -301/493 ; tau(u)= 1287/794 ; -1170271*x^2 + 395497*y^2 + 1746970*x*z - 1170271*z^2
(193049/125721 : -223246/125721 : 1) C2b (-22182162/2877079 : 4682911/2877079 : 1)
** u= 303/449 ; tau(u)= 595/146 ; 49177*x^2 + 311393*y^2 + 445834*x*z + 49177*z^2
(-20443/6141 : -10382/6141 : 1) C1b (-3978407/2483642 : -490347/2483642 : 1)
** u= 304/353 ; tau(u)= 402/49 ; 87614*x^2 + 156802*y^2 + 254020*x*z + 87614*z^2
(-9887/18063 : 7238/18063 : 1) C1b (2288697/296159 : 282023/296159 : 1)
** u= 304/389 ; tau(u)= 474/85 ; 77966*x^2 + 210226*y^2 + 317092*x*z + 77966*z^2
(-166445/461722 : 163031/461722 : 1) C1b (-220237842/9471307 : -24658621/9471307 : 1)
** u= -304/397 ; tau(u)= 1098/701 ; -890386*x^2 + 222802*y^2 + 1298020*x*z - 890386*z^2
(68569/385819 : 96842/55117 : 1) C2b (113426/227277 : 37939/227277 : 1)
** u= 306/205 ; tau(u)= -104/101 ; 73234*x^2 - 9586*y^2 + 104452*x*z + 73234*z^2
(16169/32135 : -124692/32135 : 1) C1a (1057818/71563 : -337051/71563 : 1)
** u= -307/349 ; tau(u)= 1005/656 ; -766423*x^2 + 149353*y^2 + 1104274*x*z - 766423*z^2
(-188113/496025 : -1460848/496025 : 1) C2b (-197842/1883477 : -507093/1883477 : 1)
** u= -308/261 ; tau(u)= 830/569 ; -552658*x^2 + 41378*y^2 + 783764*x*z - 552658*z^2
(-166/17525 : -64479/17525 : 1) C2b (-199429/77354 : -104101/77354 : 1)
** u= 308/325 ; tau(u)= 342/17 ; 94286*x^2 + 116386*y^2 + 211828*x*z + 94286*z^2
(-581/694 : 265/694 : 1) C1b (-700785/946 : 86981/946 : 1)
** u= 308/409 ; tau(u)= 510/101 ; 74462*x^2 + 239698*y^2 + 354964*x*z + 74462*z^2
(-1661/5448 : -1823/5448 : 1) C1b (1522974/1707341 : 281749/1707341 : 1)
** u= 309/64 ; tau(u)= 181/245 ; -24569*x^2 - 87289*y^2 + 128242*x*z - 24569*z^2
(17791/73391 : 224/929 : 1) C1a (-824474/793379 : -139359/793379 : 1)
** u= 309/196 ; tau(u)= -83/113 ; 69943*x^2 - 18649*y^2 + 102370*x*z + 69943*z^2
(-117251/23813 : 195860/23813 : 1) C1a (344398/237411 : 115487/237411 : 1)
** u= -309/269 ; tau(u)= 847/578 ; -572687*x^2 + 49241*y^2 + 812890*x*z - 572687*z^2
(3053/7113 : 18394/7113 : 1) C2b (48035726/24911035 : 2636277/4982207 : 1)
** u= 311/82 ; tau(u)= 147/229 ; -8161*x^2 - 83273*y^2 + 118330*x*z - 8161*z^2
(37059/295021 : 82894/295021 : 1) C1a (-11945177/167449 : -1312227/167449 : 1)
** u= 311/481 ; tau(u)= 651/170 ; 38921*x^2 + 366001*y^2 + 520522*x*z + 38921*z^2
(-40011/64373 : -55246/64373 : 1) C1b (-5181050/5304939 : 783053/5304939 : 1)
** u= -316/361 ; tau(u)= 1038/677 ; -816802*x^2 + 160786*y^2 + 1177300*x*z - 816802*z^2
(44548/10063 : 85519/10063 : 1) C2b (2750511/767650 : -113879/153530 : 1)
** u= 317/433 ; tau(u)= 549/116 ; 73577*x^2 + 274489*y^2 + 401890*x*z + 73577*z^2
(-1170761/1808037 : -194600/258291 : 1) C1b (103857/228505 : -5965/45701 : 1)
** u= 318/37 ; tau(u)= 244/281 ; -56798*x^2 - 98386*y^2 + 160660*x*z - 56798*z^2
(19387/14154 : 1535/2022 : 1) C1a (-473558/51961 : -58151/51961 : 1)
** u= 318/169 ; tau(u)= -20/149 ; 56722*x^2 - 44002*y^2 + 101524*x*z + 56722*z^2
(5586/21745 : -213473/152215 : 1) C1a (-1691842/5327407 : -4503897/37291849 : 1)
** u= -319/481 ; tau(u)= 1281/800 ; -1178239*x^2 + 360961*y^2 + 1742722*x*z - 1178239*z^2
(-22739/218779 : -7251320/3719243 : 1) C2b (1585230/883813 : -4068133/15024821 : 1)
** u= 320/369 ; tau(u)= 418/49 ; 97598*x^2 + 169922*y^2 + 277124*x*z + 97598*z^2
(-19889/8290 : -1491/8290 : 1) C1b (-1521497/2226745 : 259891/2226745 : 1)
** u= 320/421 ; tau(u)= 522/101 ; 81998*x^2 + 252082*y^2 + 374884*x*z + 81998*z^2
(-483493/1868338 : 363159/1868338 : 1) C1b (-47102815/31095706 : -5663303/31095706 : 1)
** u= 320/441 ; tau(u)= 562/121 ; 73118*x^2 + 286562*y^2 + 418244*x*z + 73118*z^2
(-29605/94967 : 39732/94967 : 1) C1b (-225213/22702 : 24731/22702 : 1)
** u= -320/441 ; tau(u)= 1202/761 ; -1055842*x^2 + 286562*y^2 + 1547204*x*z - 1055842*z^2
(47563/118375 : -171948/118375 : 1) C2b (2245765/2429907 : 400181/2429907 : 1)
** u= 321/148 ; tau(u)= 25/173 ; 43183*x^2 - 59233*y^2 + 103666*x*z + 43183*z^2
(13357/103173 : 14500/14739 : 1) C1a (-67778383/4446095 : 473173/261535 : 1)
** u= 321/196 ; tau(u)= -71/125 ; 71791*x^2 - 26209*y^2 + 108082*x*z + 71791*z^2
(-10785/1871 : 15652/1871 : 1) C1a (124309/56250 : -31229/56250 : 1)
** u= 323/98 ; tau(u)= 127/225 ; 3079*x^2 - 85121*y^2 + 120458*x*z + 3079*z^2
(7621/30539 : 19110/30539 : 1) C1a (-36008646/3824515 : 3954869/3824515 : 1)
** u= 326/173 ; tau(u)= -20/153 ; 59458*x^2 - 46418*y^2 + 106676*x*z + 59458*z^2
(1909/2192 : -33/16 : 1) C1a (-1510722/1146275 : -180121/1146275 : 1)
** u= -328/325 ; tau(u)= 978/653 ; -745234*x^2 + 103666*y^2 + 1064068*x*z - 745234*z^2
(19044/23485 : 6359/3355 : 1) C2b (2211775/61486 : -639759/61486 : 1)
** u= 328/377 ; tau(u)= 426/49 ; 102782*x^2 + 176674*y^2 + 289060*x*z + 102782*z^2
(-221799/92621 : 952/92621 : 1) C1b (1002536839/7608417 : 118371799/7608417 : 1)
** u= 329/68 ; tau(u)= 193/261 ; -28001*x^2 - 98993*y^2 + 145490*x*z - 28001*z^2
(31001/29449 : 28716/29449 : 1) C1a (54320910/22662643 : 6103025/22662643 : 1)
** u= 329/212 ; tau(u)= -95/117 ; 80863*x^2 - 18353*y^2 + 117266*x*z + 80863*z^2
(281275/1399523 : -3390228/1399523 : 1) C1a (-1278390/864269 : -215477/864269 : 1)
** u= -329/401 ; tau(u)= 1131/730 ; -957559*x^2 + 213361*y^2 + 1387402*x*z - 957559*z^2
(446489/203853 : -699526/203853 : 1) C2b (2529750935/223353694 : 558956657/223353694 : 1)
** u= 330/53 ; tau(u)= 224/277 ; -44558*x^2 - 103282*y^2 + 159076*x*z - 44558*z^2
(9431/23193 : 8152/23193 : 1) C1a (40070/71809 : -8199/71809 : 1)
** u= -331/457 ; tau(u)= 1245/788 ; -1132327*x^2 + 308137*y^2 + 1659586*x*z - 1132327*z^2
(-157281583/160655507 : 567310504/160655507 : 1) C2b (-557593873/12918490 : -121025467/12918490 : 1)
** u= 335/58 ; tau(u)= 219/277 ; -41233*x^2 - 105497*y^2 + 160186*x*z - 41233*z^2
(113/191 : 814/1337 : 1) C1a (-109967/94015 : -128661/658105 : 1)
** u= 336/409 ; tau(u)= 482/73 ; 102238*x^2 + 221666*y^2 + 345220*x*z + 102238*z^2
(-14579/14544 : 11603/14544 : 1) C1b (146239/71462 : -20769/71462 : 1)
** u= 337/353 ; tau(u)= 369/16 ; 113057*x^2 + 135649*y^2 + 249730*x*z + 113057*z^2
(-38681/57337 : -1400/8191 : 1) C1b (3974726290/163968803 : -506071925/163968803 : 1)
** u= 339/26 ; tau(u)= 287/313 ; -81017*x^2 - 113569*y^2 + 197290*x*z - 81017*z^2
(11/21 : 206/7077 : 1) C1a (5507/426 : 218603/143562 : 1)
** u= -340/457 ; tau(u)= 1254/797 ; -1154818*x^2 + 302098*y^2 + 1688116*x*z - 1154818*z^2
(399544/470541 : -637223/470541 : 1) C2b (-581995/148083 : 150541/148083 : 1)
** u= 342/17 ; tau(u)= 308/325 ; -94286*x^2 - 116386*y^2 + 211828*x*z - 94286*z^2
(1024/1123 : -471/1123 : 1) C1a (2724467/420275 : 318577/420275 : 1)
** u= -343/397 ; tau(u)= 1137/740 ; -977551*x^2 + 197569*y^2 + 1410418*x*z - 977551*z^2
(25267/72909 : -127708/72909 : 1) C2b (-1951293/180755 : -511769/180755 : 1)
** u= -344/449 ; tau(u)= 1242/793 ; -1139362*x^2 + 284866*y^2 + 1660900*x*z - 1139362*z^2
(15748/28313 : 39981/28313 : 1) C2b (-40327634/22730883 : 12962641/22730883 : 1)
** u= -344/485 ; tau(u)= 1314/829 ; -1256146*x^2 + 352114*y^2 + 1844932*x*z - 1256146*z^2
(-13698/46285 : 755023/323995 : 1) C2b (1161749/925579 : 1270687/6479053 : 1)
** u= 347/421 ; tau(u)= 495/74 ; 109457*x^2 + 234073*y^2 + 365434*x*z + 109457*z^2
(-888421/295615 : -56718/2069305 : 1) C1b (-3647198/102665 : 2912911/718655 : 1)
** u= 347/445 ; tau(u)= 543/98 ; 101201*x^2 + 275641*y^2 + 415258*x*z + 101201*z^2
(-110639/424533 : 9814/424533 : 1) C1b (-27387726/4015525 : 3016279/4015525 : 1)
** u= 351/34 ; tau(u)= 283/317 ; -77777*x^2 - 120889*y^2 + 203290*x*z - 77777*z^2
(12337/16127 : 8326/16127 : 1) C1a (119720368514/25072490687 : 13434516383/25072490687 : 1)
** u= -352/265 ; tau(u)= 882/617 ; -637474*x^2 + 16546*y^2 + 901828*x*z - 637474*z^2
(951/1247 : 5488/1247 : 1) C2b (464309155/44324742 : 295036127/44324742 : 1)
** u= -356/261 ; tau(u)= 878/617 ; -634642*x^2 + 9506*y^2 + 897620*x*z - 634642*z^2
(-4796/61 : 276789/427 : 1) C2b (-837553/2253441 : -18200789/15774087 : 1)
** u= 357/40 ; tau(u)= 277/317 ; -73529*x^2 - 124249*y^2 + 204178*x*z - 73529*z^2
(4311/8659 : -2444/8659 : 1) C1a (17570774/3901275 : 1955473/3901275 : 1)
** u= 357/80 ; tau(u)= 197/277 ; -26009*x^2 - 114649*y^2 + 166258*x*z - 26009*z^2
(1199/7087 : -776/7087 : 1) C1a (-5050810/3142447 : 704199/3142447 : 1)
** u= 359/361 ; tau(u)= 363/2 ; 128873*x^2 + 131761*y^2 + 260650*x*z + 128873*z^2
(-21139/24461 : 5434/171227 : 1) C1b (-253725/293411 : 251255/2053877 : 1)
** u= -361/313 ; tau(u)= 987/674 ; -778231*x^2 + 65617*y^2 + 1104490*x*z - 778231*z^2
(277/4153 : -13642/4153 : 1) C2b (2838955/1053139 : 840765/1053139 : 1)
** u= 363/2 ; tau(u)= 359/361 ; -128873*x^2 - 131761*y^2 + 260650*x*z - 128873*z^2
(60711/69401 : -30514/485807 : 1) C1a (-1414826/330097 : -1453691/2310679 : 1)
** u= 363/122 ; tau(u)= 119/241 ; 15607*x^2 - 102001*y^2 + 145930*x*z + 15607*z^2
(5689/24147 : -17050/24147 : 1) C1a (-491251/836643 : 101719/836643 : 1)
** u= 363/194 ; tau(u)= -25/169 ; 74647*x^2 - 56497*y^2 + 132394*x*z + 74647*z^2
(-2765/2141 : 10582/14987 : 1) C1a (179386/157215 : -293789/1100505 : 1)
** u= 364/449 ; tau(u)= 534/85 ; 118046*x^2 + 270706*y^2 + 417652*x*z + 118046*z^2
(-2341/6792 : -1423/6792 : 1) C1b (-15600958/1923823 : 1734599/1923823 : 1)
** u= 365/136 ; tau(u)= 93/229 ; 28343*x^2 - 96233*y^2 + 141874*x*z + 28343*z^2
(-6691/40577 : 9892/40577 : 1) C1a (818978/1417073 : 198147/1417073 : 1)
** u= -368/333 ; tau(u)= 1034/701 ; -847378*x^2 + 86354*y^2 + 1204580*x*z - 847378*z^2
(-3371/92851 : 298458/92851 : 1) C2b (3940753/3440754 : 990043/3440754 : 1)
** u= 368/369 ; tau(u)= 370 ; 135422*x^2 + 136898*y^2 + 272324*x*z + 135422*z^2
(-117179/125947 : 9138/125947 : 1) C1b (9971573/2702547 : 1500397/2702547 : 1)
** u= 368/457 ; tau(u)= 546/89 ; 119582*x^2 + 282274*y^2 + 433540*x*z + 119582*z^2
(-46601/89929 : 45722/89929 : 1) C1b (83166086/11207987 : -9917367/11207987 : 1)
** u= 369/16 ; tau(u)= 337/353 ; -113057*x^2 - 135649*y^2 + 249730*x*z - 113057*z^2
(196233/156017 : 63104/156017 : 1) C1a (-142672017/5458646 : 18139567/5458646 : 1)
** u= 369/104 ; tau(u)= 161/265 ; -4289*x^2 - 114529*y^2 + 162082*x*z - 4289*z^2
(3097/28549 : -9708/28549 : 1) C1a (-27507/84362 : 9793/84362 : 1)
** u= 369/148 ; tau(u)= 73/221 ; 38479*x^2 - 92353*y^2 + 141490*x*z + 38479*z^2
(-33769/150959 : 46476/150959 : 1) C1a (33774661/12648258 : 4461449/12648258 : 1)
** u= 370 ; tau(u)= 368/369 ; -135422*x^2 - 136898*y^2 + 272324*x*z - 135422*z^2
(10412/9679 : 747/9679 : 1) C1a (-443915946/143995429 : -68872001/143995429 : 1)
** u= 371/373 ; tau(u)= 375/2 ; 137633*x^2 + 140617*y^2 + 278266*x*z + 137633*z^2
(-91991/106321 : -2770/106321 : 1) C1b (46770457/810625 : -6109383/810625 : 1)
** u= 372/445 ; tau(u)= 518/73 ; 127726*x^2 + 257666*y^2 + 406708*x*z + 127726*z^2
(-791565/728794 : -580253/728794 : 1) C1b (450805/1369766 : -181671/1369766 : 1)
** u= -372/461 ; tau(u)= 1294/833 ; -1249394*x^2 + 286658*y^2 + 1812820*x*z - 1249394*z^2
(207906/508873 : -804965/508873 : 1) C2b (3187644106/110180687 : 720602859/110180687 : 1)
** u= 373/441 ; tau(u)= 509/68 ; 129881*x^2 + 249833*y^2 + 398210*x*z + 129881*z^2
(-362057/880093 : -192528/880093 : 1) C1b (2027473/2101209 : 390769/2101209 : 1)
** u= 375/2 ; tau(u)= 371/373 ; -137633*x^2 - 140617*y^2 + 278266*x*z - 137633*z^2
(19809/19379 : 2830/19379 : 1) C1a (25009662/8318005 : 2863343/8318005 : 1)
** u= 378/85 ; tau(u)= 208/293 ; -28814*x^2 - 128434*y^2 + 186148*x*z - 28814*z^2
(1171/3627 : 1702/3627 : 1) C1a (-7790830/1634327 : 909259/1634327 : 1)
** u= 378/109 ; tau(u)= 160/269 ; -1838*x^2 - 119122*y^2 + 168484*x*z - 1838*z^2
(362/17217 : 2059/17217 : 1) C1a (-2614363/340053 : 289039/340053 : 1)
** u= 378/145 ; tau(u)= 88/233 ; 34306*x^2 - 100834*y^2 + 150628*x*z + 34306*z^2
(583595/2242589 : -114396/131917 : 1) C1a (56086/154861 : 19837/154861 : 1)
** u= -380/441 ; tau(u)= 1262/821 ; -1203682*x^2 + 244562*y^2 + 1737044*x*z - 1203682*z^2
(-56146/1400351 : -3197733/1400351 : 1) C2b (-15299379/98171 : 3770293/98171 : 1)
** u= -380/449 ; tau(u)= 1278/829 ; -1230082*x^2 + 258802*y^2 + 1777684*x*z - 1230082*z^2
(-5871/20186 : -53987/20186 : 1) C2b (-258283/206515 : -103261/206515 : 1)
** u= 381/104 ; tau(u)= 173/277 ; -8297*x^2 - 123529*y^2 + 175090*x*z - 8297*z^2
(9041/549 : 8644/3843 : 1) C1a (1008474/876373 : -1000673/6134611 : 1)
** u= 382/89 ; tau(u)= 204/293 ; -25774*x^2 - 130082*y^2 + 187540*x*z - 25774*z^2
(2804/19739 : 1019/19739 : 1) C1a (9302726/351863 : -1023651/351863 : 1)
** u= 383/50 ; tau(u)= 283/333 ; -75089*x^2 - 141689*y^2 + 226778*x*z - 75089*z^2
(41167/26777 : -22050/26777 : 1) C1a (6876318/3790205 : 775951/3790205 : 1)
** u= 385/232 ; tau(u)= -79/153 ; 101407*x^2 - 40577*y^2 + 154466*x*z + 101407*z^2
(79949/12985 : -142644/12985 : 1) C1a (-368271190/106976493 : 4266091/8228961 : 1)
** u= 386/241 ; tau(u)= -96/145 ; 106946*x^2 - 32834*y^2 + 158212*x*z + 106946*z^2
(-14307/17213 : -3014/2459 : 1) C1a (1818625/231382 : -400593/231382 : 1)
** u= 387/146 ; tau(u)= 95/241 ; 33607*x^2 - 107137*y^2 + 158794*x*z + 33607*z^2
(26263/72601 : 68526/72601 : 1) C1a (14453090/4068567 : -1773239/4068567 : 1)
** u= 387/202 ; tau(u)= -17/185 ; 81319*x^2 - 68161*y^2 + 150058*x*z + 81319*z^2
(-234437/245029 : -103614/245029 : 1) C1a (-1469350/4117959 : 484051/4117959 : 1)
** u= -388/369 ; tau(u)= 1126/757 ; -995554*x^2 + 121778*y^2 + 1418420*x*z - 995554*z^2
(4934/1247 : 11835/1247 : 1) C2b (22744546/13368087 : 5154911/13368087 : 1)
** u= -388/421 ; tau(u)= 1230/809 ; -1158418*x^2 + 203938*y^2 + 1663444*x*z - 1158418*z^2
(411/70 : 6073/490 : 1) C2b (-12312773/3151373 : -27021859/22059611 : 1)
** u= 391/98 ; tau(u)= 195/293 ; -18817*x^2 - 133673*y^2 + 190906*x*z - 18817*z^2
(65739/412309 : -119042/412309 : 1) C1a (1960135/2025778 : -294441/2025778 : 1)
** u= -391/397 ; tau(u)= 1185/788 ; -1089007*x^2 + 162337*y^2 + 1557106*x*z - 1089007*z^2
(-490045/9077 : 9003044/63539 : 1) C2b (5837923/373330 : 11142711/2613310 : 1)
** u= -392/353 ; tau(u)= 1098/745 ; -956386*x^2 + 95554*y^2 + 1359268*x*z - 956386*z^2
(-247367/133545 : 1122884/133545 : 1) C2b (487318/3600915 : -1137581/3600915 : 1)
** u= 393/104 ; tau(u)= 185/289 ; -12593*x^2 - 132817*y^2 + 188674*x*z - 12593*z^2
(52337/720109 : 64124/720109 : 1) C1a (-580189/477774 : -85123/477774 : 1)
** u= 393/148 ; tau(u)= 97/245 ; 34399*x^2 - 110641*y^2 + 163858*x*z + 34399*z^2
(28953/197413 : -144368/197413 : 1) C1a (-572455/1042103 : 120827/1042103 : 1)
** u= 395/397 ; tau(u)= 399/2 ; 156017*x^2 + 159193*y^2 + 315226*x*z + 156017*z^2
(-17065/19631 : -514/19631 : 1) C1b (13124903/20871270 : 3840701/20871270 : 1)
** u= 399/2 ; tau(u)= 395/397 ; -156017*x^2 - 159193*y^2 + 315226*x*z - 156017*z^2
(250391/217405 : -5014/217405 : 1) C1a (-35015699/123294 : -4543903/123294 : 1)
** u= 399/194 ; tau(u)= 11/205 ; 75151*x^2 - 83929*y^2 + 159322*x*z + 75151*z^2
(-1361/933 : -166/933 : 1) C1a (-359410/1673301 : -194921/1673301 : 1)
** u= 399/274 ; tau(u)= -149/125 ; 127951*x^2 - 9049*y^2 + 181402*x*z + 127951*z^2
(76391/15829 : -332110/15829 : 1) C1a (219669/31075 : -99989/31075 : 1)
** u= 400/401 ; tau(u)= 402 ; 159998*x^2 + 161602*y^2 + 321604*x*z + 159998*z^2
(-453/437 : 290/3059 : 1) C1b (-3463/2050 : -67/350 : 1)
** u= 402 ; tau(u)= 400/401 ; -159998*x^2 - 161602*y^2 + 321604*x*z - 159998*z^2
(244/269 : 41/1883 : 1) C1a (1420083/603490 : -1123757/4224430 : 1)
** u= 402/49 ; tau(u)= 304/353 ; -87614*x^2 - 156802*y^2 + 254020*x*z - 87614*z^2
(23734/13997 : 10675/13997 : 1) C1a (941907/968251 : -128117/968251 : 1)
** u= 402/109 ; tau(u)= 184/293 ; -10094*x^2 - 137842*y^2 + 195460*x*z - 10094*z^2
(59/54 : 2609/2214 : 1) C1a (252347/226091 : -1483207/9269731 : 1)
** u= -403/337 ; tau(u)= 1077/740 ; -932791*x^2 + 64729*y^2 + 1322338*x*z - 932791*z^2
(-18017/40761 : 1462036/285327 : 1) C2b (-114223/145625 : 699753/1019375 : 1)
** u= 404/433 ; tau(u)= 462/29 ; 161534*x^2 + 211762*y^2 + 376660*x*z + 161534*z^2
(-71528/70833 : 35803/70833 : 1) C1b (-33577543/7939399 : 3807667/7939399 : 1)
** u= 411/106 ; tau(u)= 199/305 ; -17129*x^2 - 146449*y^2 + 208522*x*z - 17129*z^2
(10155/92401 : -18038/92401 : 1) C1a (-317453/252045 : -46273/252045 : 1)
** u= -412/333 ; tau(u)= 1078/745 ; -940306*x^2 + 52034*y^2 + 1331828*x*z - 940306*z^2
(32/2681 : 11301/2681 : 1) C2b (-727314/868085 : -686717/868085 : 1)
** u= -412/433 ; tau(u)= 1278/845 ; -1258306*x^2 + 205234*y^2 + 1803028*x*z - 1258306*z^2
(-131324/132221 : 604539/132221 : 1) C2b (-35185185/10727186 : 11830453/10727186 : 1)
** u= -416/353 ; tau(u)= 1122/769 ; -1009666*x^2 + 76162*y^2 + 1431940*x*z - 1009666*z^2
(-108103/189507 : 1008058/189507 : 1) C2b (1202670/594691 : 355115/594691 : 1)
** u= 416/445 ; tau(u)= 474/29 ; 171374*x^2 + 222994*y^2 + 397732*x*z + 171374*z^2
(-70829/50395 : 23648/50395 : 1) C1b (-3448810/161183 : -415857/161183 : 1)
** u= 418/49 ; tau(u)= 320/369 ; -97598*x^2 - 169922*y^2 + 277124*x*z - 97598*z^2
(89041/122963 : -67956/122963 : 1) C1a (151110/126809 : 18743/126809 : 1)
** u= 419/493 ; tau(u)= 567/74 ; 164609*x^2 + 310537*y^2 + 497050*x*z + 164609*z^2
(-783733/511231 : -420930/511231 : 1) C1b (-10839886/2297253 : 1200721/2297253 : 1)
** u= -420/373 ; tau(u)= 1166/793 ; -1081298*x^2 + 101858*y^2 + 1535956*x*z - 1081298*z^2
(-14194/595783 : -1974283/595783 : 1) C2b (-25750819/4218166 : 355953/145454 : 1)
** u= 421/160 ; tau(u)= 101/261 ; 40999*x^2 - 126041*y^2 + 187442*x*z + 40999*z^2
(-44323/40194133 : 3266616/5742019 : 1) C1a (-47102815/31095706 : -5663303/31095706 : 1)
** u= -421/333 ; tau(u)= 1087/754 ; -959791*x^2 + 44537*y^2 + 1358810*x*z - 959791*z^2
(-59597/308227 : 1638402/308227 : 1) C2b (-4387834/23855847 : -13796989/23855847 : 1)
** u= 423/74 ; tau(u)= 275/349 ; -64673*x^2 - 167977*y^2 + 254554*x*z - 64673*z^2
(359/557 : -366/557 : 1) C1a (48068346/5351999 : -5325637/5351999 : 1)
** u= 426/49 ; tau(u)= 328/377 ; -102782*x^2 - 176674*y^2 + 289060*x*z - 102782*z^2
(13254/11063 : -8155/11063 : 1) C1a (12506862/4274581 : 1376609/4274581 : 1)
** u= 429/148 ; tau(u)= 133/281 ; 26119*x^2 - 140233*y^2 + 201730*x*z + 26119*z^2
(-4831/95989 : 32456/95989 : 1) C1a (119671/404038 : -48139/404038 : 1)
** u= 431/170 ; tau(u)= 91/261 ; 49519*x^2 - 127961*y^2 + 194042*x*z + 49519*z^2
(4993/161267 : 106278/161267 : 1) C1a (3085638/313133 : 360491/313133 : 1)
** u= 434/281 ; tau(u)= -128/153 ; 141538*x^2 - 30434*y^2 + 204740*x*z + 141538*z^2
(-58999/43639 : -87888/43639 : 1) C1a (1514306/225435 : 80135/45087 : 1)
** u= 436/477 ; tau(u)= 518/41 ; 186734*x^2 + 264962*y^2 + 458420*x*z + 186734*z^2
(-37418/60019 : 18975/60019 : 1) C1b (100816458/33016619 : 14309761/33016619 : 1)
** u= 437/100 ; tau(u)= 237/337 ; -36169*x^2 - 170969*y^2 + 247138*x*z - 36169*z^2
(207149/1296089 : 153760/1296089 : 1) C1a (24871490/7425797 : 2755191/7425797 : 1)
** u= -439/349 ; tau(u)= 1137/788 ; -1049167*x^2 + 50881*y^2 + 1485490*x*z - 1049167*z^2
(12003/60937 : -241216/60937 : 1) C2b (-566983/152686 : 339943/152686 : 1)
** u= -440/461 ; tau(u)= 1362/901 ; -1430002*x^2 + 231442*y^2 + 2048644*x*z - 1430002*z^2
(40995/163663 : -341312/163663 : 1) C2b (826067/918677 : 187149/918677 : 1)
** u= 441/160 ; tau(u)= 121/281 ; 36559*x^2 - 143281*y^2 + 209122*x*z + 36559*z^2
(-1213/8363 : -1848/8363 : 1) C1a (-225213/22702 : 24731/22702 : 1)
** u= 441/292 ; tau(u)= -143/149 ; 150079*x^2 - 23953*y^2 + 214930*x*z + 150079*z^2
(-27029/115659 : 245644/115659 : 1) C1a (60409317/24744314 : -21972701/24744314 : 1)
** u= 441/296 ; tau(u)= -151/145 ; 152431*x^2 - 19249*y^2 + 217282*x*z + 152431*z^2
(-8251/29633 : 68796/29633 : 1) C1a (388499250/43178669 : -129877181/43178669 : 1)
** u= 442/73 ; tau(u)= 296/369 ; -76958*x^2 - 184706*y^2 + 282980*x*z - 76958*z^2
(30947/47689 : 30240/47689 : 1) C1a (-1381506631/193975270 : -32961071/38795054 : 1)
** u= -443/333 ; tau(u)= 1109/776 ; -1008103*x^2 + 25529*y^2 + 1426130*x*z - 1008103*z^2
(61067/38297 : -1911012/268079 : 1) C2b (-38541/750202 : 3746767/5251414 : 1)
** u= 443/477 ; tau(u)= 511/34 ; 193937*x^2 + 258809*y^2 + 457370*x*z + 193937*z^2
(-163711/208601 : -87522/208601 : 1) C1b (-1009557966/5920839113 : 681441497/5920839113 : 1)
** u= -444/317 ; tau(u)= 1078/761 ; -961106*x^2 + 3842*y^2 + 1359220*x*z - 961106*z^2
(-3696/8843 : 185855/8843 : 1) C2b (531926/551053 : -718263/551053 : 1)
** u= 446/113 ; tau(u)= 220/333 ; -22862*x^2 - 173378*y^2 + 247316*x*z - 22862*z^2
(30362/257191 : -47907/257191 : 1) C1a (-1570215/480434 : 185153/480434 : 1)
** u= 447/130 ; tau(u)= 187/317 ; -1169*x^2 - 166009*y^2 + 234778*x*z - 1169*z^2
(48793/9011 : 24586/9011 : 1) C1a (494930/1071023 : -128921/1071023 : 1)
** u= 448/477 ; tau(u)= 506/29 ; 199022*x^2 + 254354*y^2 + 456740*x*z + 199022*z^2
(-39431/24277 : 6420/24277 : 1) C1b (-1522273/1330569 : -187999/1330569 : 1)
** u= -448/477 ; tau(u)= 1402/925 ; -1510546*x^2 + 254354*y^2 + 2166308*x*z - 1510546*z^2
(-142537/170987 : -708420/170987 : 1) C2b (7280167/5553270 : 1407791/5553270 : 1)
** u= 450/257 ; tau(u)= -64/193 ; 128002*x^2 - 70402*y^2 + 206596*x*z + 128002*z^2
(1/149 : -202/149 : 1) C1a (-309883265/26840362 : -46364833/26840362 : 1)
** u= 457/232 ; tau(u)= -7/225 ; 107599*x^2 - 101201*y^2 + 208898*x*z + 107599*z^2
(-620473/754363 : -219540/754363 : 1) C1a (-23178781/1480030 : -2969579/1480030 : 1)
** u= 459/122 ; tau(u)= 215/337 ; -16457*x^2 - 180913*y^2 + 256906*x*z - 16457*z^2
(1611/24893 : -586/24893 : 1) C1a (18231190/1664653 : -1996619/1664653 : 1)
** u= 462/29 ; tau(u)= 404/433 ; -161534*x^2 - 211762*y^2 + 376660*x*z - 161534*z^2
(3683/5952 : 1273/5952 : 1) C1a (5269315/77142 : -642935/77142 : 1)
** u= 462/145 ; tau(u)= 172/317 ; 12466*x^2 - 171394*y^2 + 243028*x*z + 12466*z^2
(2 : 127/71 : 1) C1a (3150/17027 : -136001/1208917 : 1)
** u= 462/149 ; tau(u)= 164/313 ; 17506*x^2 - 169042*y^2 + 240340*x*z + 17506*z^2
(-3253/53722 : -7177/53722 : 1) C1a (-28224210/8773423 : -3176645/8773423 : 1)
** u= 462/157 ; tau(u)= 148/305 ; 27394*x^2 - 164146*y^2 + 235348*x*z + 27394*z^2
(363579/12143342 : -5564323/12143342 : 1) C1a (-20785378/21935503 : 3131493/21935503 : 1)
** u= 462/197 ; tau(u)= 68/265 ; 72994*x^2 - 135826*y^2 + 218068*x*z + 72994*z^2
(-181/54 : -59/54 : 1) C1a (410144150/21908903 : -48755903/21908903 : 1)
** u= 462/289 ; tau(u)= -116/173 ; 153586*x^2 - 46402*y^2 + 226900*x*z + 153586*z^2
(-46023/12338 : -68833/12338 : 1) C1a (680358/20275 : 5653/811 : 1)
** u= 463/130 ; tau(u)= 203/333 ; -7409*x^2 - 180569*y^2 + 255578*x*z - 7409*z^2
(267713/1637035 : -712326/1637035 : 1) C1a (-22846552754/372617901 : 2503702663/372617901 : 1)
** u= 463/242 ; tau(u)= -21/221 ; 116687*x^2 - 97241*y^2 + 214810*x*z + 116687*z^2
(15848071/95050909 : 120293162/95050909 : 1) C1a (-559201/463265 : 13569/92653 : 1)
** u= 465/296 ; tau(u)= -127/169 ; 159103*x^2 - 40993*y^2 + 232354*x*z + 159103*z^2
(-215421/937415 : -1564004/937415 : 1) C1a (-31769/26246 : 5169/26246 : 1)
** u= 466/149 ; tau(u)= 168/317 ; 16178*x^2 - 172754*y^2 + 245380*x*z + 16178*z^2
(224763/448057 : -408136/448057 : 1) C1a (-4119937/530759 : 451929/530759 : 1)
** u= 467/314 ; tau(u)= -161/153 ; 171271*x^2 - 20897*y^2 + 244010*x*z + 171271*z^2
(-86627/96971 : -201210/96971 : 1) C1a (-3210593/560265 : 179021/112053 : 1)
** u= 469/100 ; tau(u)= 269/369 ; -52361*x^2 - 199961*y^2 + 292322*x*z - 52361*z^2
(6979/13019 : 8700/13019 : 1) C1a (794795/1119606 : 139307/1119606 : 1)
** u= -469/493 ; tau(u)= 1455/962 ; -1630927*x^2 + 266137*y^2 + 2336986*x*z - 1630927*z^2
(-604743/2374241 : -7028062/2374241 : 1) C2b (6710461/780749 : 1688839/780749 : 1)
** u= 471/202 ; tau(u)= 67/269 ; 77119*x^2 - 140233*y^2 + 226330*x*z + 77119*z^2
(610091/885201 : -53378/38487 : 1) C1a (-3618569173/1136799781 : 30617739/87446137 : 1)
** u= -473/441 ; tau(u)= 1355/914 ; -1447063*x^2 + 165233*y^2 + 2059754*x*z - 1447063*z^2
(-273785/767647 : -2904678/767647 : 1) C2b (449575618/165378997 : 114914087/165378997 : 1)
** u= 474/29 ; tau(u)= 416/445 ; -171374*x^2 - 222994*y^2 + 397732*x*z - 171374*z^2
(1645/2843 : -224/2843 : 1) C1a (-1551285/105034 : 196631/105034 : 1)
** u= 474/85 ; tau(u)= 304/389 ; -77966*x^2 - 210226*y^2 + 317092*x*z - 77966*z^2
(930/379 : 397/379 : 1) C1a (5842095/923458 : -642851/923458 : 1)
** u= 474/97 ; tau(u)= 280/377 ; -59582*x^2 - 205858*y^2 + 303076*x*z - 59582*z^2
(447/137 : 164/137 : 1) C1a (96879234/16084031 : 10615337/16084031 : 1)
** u= 474/233 ; tau(u)= 8/241 ; 108514*x^2 - 116098*y^2 + 224740*x*z + 108514*z^2
(-224/369 : 119/369 : 1) C1a (-1169163/3253981 : -368587/3253981 : 1)
** u= 478/245 ; tau(u)= -12/233 ; 119906*x^2 - 108434*y^2 + 228628*x*z + 119906*z^2
(-28783/53124 : 28511/53124 : 1) C1a (-4383626/1664515 : -506073/1664515 : 1)
** u= 482/73 ; tau(u)= 336/409 ; -102238*x^2 - 221666*y^2 + 345220*x*z - 102238*z^2
(12607/35239 : 6770/35239 : 1) C1a (-123757/194234 : 29799/194234 : 1)
** u= 483/202 ; tau(u)= 79/281 ; 75367*x^2 - 151681*y^2 + 239530*x*z + 75367*z^2
(4533287/28976901 : -25196450/28976901 : 1) C1a (-4660446/5193995 : -133843/1038799 : 1)
** u= -483/349 ; tau(u)= 1181/832 ; -1151159*x^2 + 10313*y^2 + 1628050*x*z - 1151159*z^2
(2041/1559 : 15296/1559 : 1) C2b (-124674350/29392463 : 169951245/29392463 : 1)
** u= -483/433 ; tau(u)= 1349/916 ; -1444823*x^2 + 141689*y^2 + 2053090*x*z - 1444823*z^2
(868557/3981427 : 10919116/3981427 : 1) C2b (1777229/2993917 : 754281/2993917 : 1)
** u= -484/477 ; tau(u)= 1438/961 ; -1612786*x^2 + 220802*y^2 + 2302100*x*z - 1612786*z^2
(-32879/122872 : -400365/122872 : 1) C2b (-11083719082/43346501 : -3303657667/43346501 : 1)
** u= 485/196 ; tau(u)= 93/289 ; 68183*x^2 - 158393*y^2 + 243874*x*z + 68183*z^2
(25855/2571643 : 41888/62723 : 1) C1a (6615046/554731 : -775731/554731 : 1)
** u= 486/241 ; tau(u)= 4/245 ; 116146*x^2 - 120034*y^2 + 236212*x*z + 116146*z^2
(1670/311 : 1953/311 : 1) C1a (269185/1502577 : -213293/1502577 : 1)
** u= -488/365 ; tau(u)= 1218/853 ; -1217074*x^2 + 28306*y^2 + 1721668*x*z - 1217074*z^2
(-64671/1856561 : -12477404/1856561 : 1) C2b (-2077/48685 : -2771/3745 : 1)
** u= -488/441 ; tau(u)= 1370/929 ; -1487938*x^2 + 150818*y^2 + 2115044*x*z - 1487938*z^2
(59909/2060957 : 6341076/2060957 : 1) C2b (-40382545/2590878 : 14563687/2590878 : 1)
** u= 489/260 ; tau(u)= -31/229 ; 134239*x^2 - 103921*y^2 + 240082*x*z + 134239*z^2
(-729/395 : 472/395 : 1) C1a (-79661/35005 : -9337/35005 : 1)
** u= 495/74 ; tau(u)= 347/421 ; -109457*x^2 - 234073*y^2 + 365434*x*z - 109457*z^2
(3595/10289 : -10382/72023 : 1) C1a (11230/10069 : 10177/70483 : 1)
** u= -496/409 ; tau(u)= 1314/905 ; -1392034*x^2 + 88546*y^2 + 1972612*x*z - 1392034*z^2
(-505/36674 : 146837/36674 : 1) C2b (2646258/1963237 : 815741/1963237 : 1)
567
>
ここからは、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、最終的に得られた(1)の整点のみを記述する。
ここで、対応する整点が見つかった各有理数uについて、0 <= A <= B <=C を満たすように、A,B,Cを交換して、Dの小さい順に(1)の等式を並べ替えると、以下のようになる。
- u=-268/441のとき:(3a+),(3b-)
1650491964322344197661637^4+2210459688733716347240518^4+2522209689895845066951435^4=6962*318635150189388184290193^4
93177695405116955725906543306^4+120159094306411156271972202859^4+137232837767140861187446877355^4=6962*17402416693032814594130832809^4
18635360829508264456813367732628530619732784982010615709898332168170890100032696658512390018^4+25954235861390922629029267994681849624597402494619435964701867925372802035285509816072133827^4+29642395734940022385962381459100840675045800904514108194139226307434897818286657536982267115^4=6962*3729173599939411340481583972662609709886866954641511654789865321599637391424178203913295877^4
3353675991245937089972801427337150227124831981507924570879634145203784115506728145104369866396185688328621^4+4168943077784619233586679645934443278899918324589601506790797980792334308092520908185584605570749131561294^4+4774742873345170829809522580439921369322156981118217124764482004973202778608187436973478632377632658231755^4=6962*607512851131275960333710048169595633626507202547290277752220702736197638026984754881378735525584942978669^4
3422568810113336624352411203605941160378449416661808788808087929352839882084283612844006341736460644968203311405559672535137570910615013245547009623713032815163^4+14120129042397678666833573561448665822265569606825059482928095092666354668862898442430863903533234861719798806467550771947723031207130187459549420572937194567882^4+20221357122582071168451580855850409232862727967201968722701517021087926077751641521862637782698827290203329186049069763972212274881150612739706367042169508677915^4=6962*2335375142836111007656317329501455361740926781170282115304884635891597980416767679079508506119793354638496951587061262558148601483304575891087052156834331696393^4
663598433600493140547969761483620137230821535702932038609615757852648937154205346392300606759524104346100821913082831337388458104394423482640132783718345409538647625635674886^4+2347666723331889907989443720482497249209812005525834770878169656770184564962157296315979234620455943941269975310461137001286688809880853351360347615580963746190532640076651829^4+3266610354943921146136240933085818178348460537420220795564308449296649699095280655263452366991789758379083697742169654279241180727514049387444239927958021031508360944867138555^4=6962*379520434934739347640071605398784939743705456963161074230629596825550511198890227658206890818460636576320094368128206211803025190169076751111468701165901783185948488877293521^4
...
- u=53/345のとき:(3a-),(3b-)
228599^4+398665^4+545334^4=6962*63949^4
2113662790562531464392486935884803042510696481462223^4+3665402391908514971432871202880371181419459158306697^4+4945738229807822692208097505671537697167655826172110^4=6962*581998713321257541132885625003178334523728616255497^4
2100025742028550565317034540707738058045456505545843^4+45421086823208472056892867402399364963564512694486330^4+86814184869655136511659601486250622020198579283437163^4=6962*9677261339139326855835271964461652181768811191847443^4
2989472392846568711405989844384508773418006548633497255238749^4+5247424270218191752448109700280562338306556022489457257035771^4+7275947729607520102063338228794013798515522808130446339517690^4=6962*850376591932557540163404320546557786215437693389866219943091^4
2351214120863646801133503039900683783854583414517221428207680062297457970528543319063299^4+94578202800517985208983759363181400399839922265752340305854395109357174674098622117678946^4+180914337585240844208056291417960754136729600514169753573129513595274697471997657395068915^4=6962*20165567903724335993311215724025915038088564000348196013167851162548889792381970949123591^4
59442906178173341975967235646509957527788438237730021133190727503956659055213257214276927429914775757188552040346659^4+880282721830561673823597546931446654501944295478124031909489349536255007946575603233155961823283773995352492737829426^4+1680340296095203098876171785400583640302244715332071105027322019591609015121151001778949733642238563890805829767092355^4=6962*187326035268452667311176647095954432973997047856339559111871610505733481654885017468454460980172549460559566619813151^4
249298444659946216580102823233061001362855903557953088233344226765750315904321202782503678245420711109072619072504886026525839122137544129754288169^4+426731012331015557050156264319686969010691327978193190239981400598734951250398782346270386307026178732207757240763857868410222584908435162639864929^4+549744075897987365966780251715142723959110464825326685272977437616813792819203052065304918264721987845990443381772406556770932668513763173959270590^4=6962*65527397430050936899944588671541300142348971721754922717799825151542525706306491654476066089155900185262315918276450284734653838306746804941639569^4
352097781960030763433819573399098478032148143780076194489359942240357445089768703243326681851611533709893270023102830441069842898061439337383494095447167248422737366635116259^4+604526230133930425520824405554320640519774043641132545709469492867528355142278337723756416511752880107893551785504909496062337799742333680145929159194553486964181506303847155^4+789820300592340236404738108059427836630550817527810732623122020980902623268428109795824735501989830473697340866660669466839499481561942533524102633015650659809305898099050626^4=6962*93761895735511977880855383471639454184869745317790722397261099198228734922017259455804849130355322008726024816013980293227255849801564768154412984657770034458899345034288951^4
...
[2025.11.05追記]
さらに他の整点を探すために、高さが500以下で、(3a-),(3b±)の共通の有理点を持つ有理数数uを選択すると、以下のように344個のuが抽出される。
> PPY(59,1,500);
** u= 1/3 ; tau(u)= 5/2 ; -7*x^2 - 17*y^2 + 26*x*z - 7*z^2
(1/2 : -1/2 : 1) C1b (155/38 : 17/38 : 1)
** u= 1/87 ; tau(u)= 173/86 ; -14791*x^2 - 15137*y^2 + 29930*x*z - 14791*z^2
(764/861 : 11/123 : 1) C1b (-2846261/100307 : 375027/100307 : 1)
** u= 1/185 ; tau(u)= 369/184 ; -67711*x^2 - 68449*y^2 + 136162*x*z - 67711*z^2
(10412/9679 : 747/9679 : 1) C1b (-443915946/143995429 : -68872001/143995429 : 1)
** u= 1/201 ; tau(u)= 401/200 ; -79999*x^2 - 80801*y^2 + 160802*x*z - 79999*z^2
(244/269 : 41/1883 : 1) C1b (1420083/603490 : -1123757/4224430 : 1)
** u= 1/455 ; tau(u)= 909/454 ; -412231*x^2 - 414049*y^2 + 826282*x*z - 412231*z^2
(127180/135137 : 3537/135137 : 1) C1b (7050046/20882171 : -2393951/20882171 : 1)
** u= 4/87 ; tau(u)= 170/83 ; -13762*x^2 - 15122*y^2 + 28916*x*z - 13762*z^2
(2373/1879 : -434/1879 : 1) C1b (4566803/142730 : -572923/142730 : 1)
** u= 4/119 ; tau(u)= 234/115 ; -26434*x^2 - 28306*y^2 + 54772*x*z - 26434*z^2
(5407/4181 : -342/4181 : 1) C1b (-241/81 : -37/81 : 1)
** u= 4/123 ; tau(u)= 242/119 ; -28306*x^2 - 30242*y^2 + 58580*x*z - 28306*z^2
(10639/8237 : 550/8237 : 1) C1b (-327959/7767 : 42509/7767 : 1)
** u= 4/363 ; tau(u)= 722/359 ; -257746*x^2 - 263522*y^2 + 521300*x*z - 257746*z^2
(60711/69401 : -30514/485807 : 1) C1b (-1414826/330097 : -1453691/2310679 : 1)
** u= 4/375 ; tau(u)= 746/371 ; -275266*x^2 - 281234*y^2 + 556532*x*z - 275266*z^2
(19809/19379 : 2830/19379 : 1) C1b (25009662/8318005 : 2863343/8318005 : 1)
** u= 4/399 ; tau(u)= 794/395 ; -312034*x^2 - 318386*y^2 + 630452*x*z - 312034*z^2
(250391/217405 : -5014/217405 : 1) C1b (-35015699/123294 : -4543903/123294 : 1)
** u= 5/2 ; tau(u)= 1/3 ; 7*x^2 + 17*y^2 + 26*x*z + 7*z^2
(-1/2 : -1/2 : 1) C1a (-78/107 : 13/107 : 1)
** u= 5/71 ; tau(u)= 137/66 ; -8687*x^2 - 10057*y^2 + 18794*x*z - 8687*z^2
(4380/3017 : 73/431 : 1) C1b (5660965/77242 : -707961/77242 : 1)
** u= 5/269 ; tau(u)= 533/264 ; -139367*x^2 - 144697*y^2 + 284114*x*z - 139367*z^2
(2661/3220 : 929/22540 : 1) C1b (22836238/12264073 : -17994717/85848511 : 1)
** u= 5/273 ; tau(u)= 541/268 ; -143623*x^2 - 149033*y^2 + 292706*x*z - 143623*z^2
(94367/93265 : 17924/93265 : 1) C1b (4045827/254555 : -506659/254555 : 1)
** u= 5/309 ; tau(u)= 613/304 ; -184807*x^2 - 190937*y^2 + 375794*x*z - 184807*z^2
(8771621/7346107 : 344632/7346107 : 1) C1b (294994127/13466527 : 37273491/13466527 : 1)
** u= 5/483 ; tau(u)= 961/478 ; -456943*x^2 - 466553*y^2 + 923546*x*z - 456943*z^2
(72672/63139 : 2449/63139 : 1) C1b (-274411398/13302077 : -36425059/13302077 : 1)
** u= 8/69 ; tau(u)= 130/61 ; -7378*x^2 - 9458*y^2 + 16964*x*z - 7378*z^2
(565/333 : -44/333 : 1) C1b (-11965/12518 : 2557/12518 : 1)
** u= 8/189 ; tau(u)= 370/181 ; -65458*x^2 - 71378*y^2 + 136964*x*z - 65458*z^2
(4897/6601 : 12/287 : 1) C1b (5868086/6344955 : -797429/6344955 : 1)
** u= 8/245 ; tau(u)= 482/237 ; -112274*x^2 - 119986*y^2 + 232388*x*z - 112274*z^2
(437/465 : -112/465 : 1) C1b (-1722317/572653 : 264033/572653 : 1)
** u= 13/29 ; tau(u)= 45/16 ; -343*x^2 - 1513*y^2 + 2194*x*z - 343*z^2
(13/53 : 18/53 : 1) C1b (-3502235/424382 : 398317/424382 : 1)
** u= 13/33 ; tau(u)= 53/20 ; -631*x^2 - 2009*y^2 + 2978*x*z - 631*z^2
(30/133 : 61/931 : 1) C1b (80042/4363 : -62163/30541 : 1)
** u= 13/129 ; tau(u)= 245/116 ; -26743*x^2 - 33113*y^2 + 60194*x*z - 26743*z^2
(332480/216061 : 60053/216061 : 1) C1b (-869105/225903 : 122923/225903 : 1)
** u= 16/21 ; tau(u)= 26/5 ; 206*x^2 - 626*y^2 + 932*x*z + 206*z^2
(1/5 : -4/5 : 1) C1b (232543/99030 : 30569/99030 : 1)
** u= 16/89 ; tau(u)= 162/73 ; -10402*x^2 - 15586*y^2 + 26500*x*z - 10402*z^2
(841/1013 : 540/1013 : 1) C1b (418649/18567 : 49421/18567 : 1)
** u= 16/229 ; tau(u)= 442/213 ; -90482*x^2 - 104626*y^2 + 195620*x*z - 90482*z^2
(35569/31141 : 11756/31141 : 1) C1b (628835/149342 : -72405/149342 : 1)
** u= 17/45 ; tau(u)= 73/28 ; -1279*x^2 - 3761*y^2 + 5618*x*z - 1279*z^2
(209/863 : -36/863 : 1) C1b (172798/139525 : -22033/139525 : 1)
** u= 17/81 ; tau(u)= 145/64 ; -7903*x^2 - 12833*y^2 + 21314*x*z - 7903*z^2
(823/985 : -576/985 : 1) C1b (81839/74711 : 10441/74711 : 1)
** u= 17/137 ; tau(u)= 257/120 ; -28511*x^2 - 37249*y^2 + 66338*x*z - 28511*z^2
(17/29 : -698/5597 : 1) C1b (34241/20534 : -745929/3963062 : 1)
** u= 17/171 ; tau(u)= 325/154 ; -47143*x^2 - 58193*y^2 + 105914*x*z - 47143*z^2
(1024/1123 : -471/1123 : 1) C1b (2724467/420275 : 318577/420275 : 1)
** u= 17/281 ; tau(u)= 545/264 ; -139103*x^2 - 157633*y^2 + 297314*x*z - 139103*z^2
(13837/10857 : 22546/75999 : 1) C1b (-134255/64414 : 153963/450898 : 1)
** u= 17/297 ; tau(u)= 577/280 ; -156511*x^2 - 176129*y^2 + 333218*x*z - 156511*z^2
(29201/27101 : 9318/27101 : 1) C1b (259212423/9550922 : -32271529/9550922 : 1)
** u= 17/373 ; tau(u)= 729/356 ; -253183*x^2 - 277969*y^2 + 531730*x*z - 253183*z^2
(233242/253379 : -10125/36197 : 1) C1b (17152542/8372429 : -1920631/8372429 : 1)
** u= 20/267 ; tau(u)= 514/247 ; -121618*x^2 - 142178*y^2 + 264596*x*z - 121618*z^2
(2467/3033 : 922/3033 : 1) C1b (317925/467011 : -53677/467011 : 1)
** u= 25/89 ; tau(u)= 153/64 ; -7567*x^2 - 15217*y^2 + 24034*x*z - 7567*z^2
(194/103 : 87/103 : 1) C1b (-2169130/2189029 : 408823/2189029 : 1)
** u= 25/463 ; tau(u)= 901/438 ; -383063*x^2 - 428113*y^2 + 812426*x*z - 383063*z^2
(30699/26090 : -57559/182630 : 1) C1b (4868870/800207 : 4036107/5601449 : 1)
** u= 26/5 ; tau(u)= 16/21 ; -206*x^2 + 626*y^2 + 932*x*z - 206*z^2
(-5 : 4 : 1) C1a (43/98 : -11/98 : 1)
** u= 29/231 ; tau(u)= 433/202 ; -80767*x^2 - 105881*y^2 + 188330*x*z - 80767*z^2
(3683/5952 : 1273/5952 : 1) C1b (5269315/77142 : -642935/77142 : 1)
** u= 29/237 ; tau(u)= 445/208 ; -85687*x^2 - 111497*y^2 + 198866*x*z - 85687*z^2
(1645/2843 : -224/2843 : 1) C1b (-1551285/105034 : 196631/105034 : 1)
** u= 29/253 ; tau(u)= 477/224 ; -99511*x^2 - 127177*y^2 + 228370*x*z - 99511*z^2
(39431/24277 : 6420/24277 : 1) C1b (-76586526/58130047 : -14132363/58130047 : 1)
** u= 29/381 ; tau(u)= 733/352 ; -246967*x^2 - 289481*y^2 + 538130*x*z - 246967*z^2
(93097/112457 : 35758/112457 : 1) C1b (-13351474/5091413 : 2049301/5091413 : 1)
** u= 32/45 ; tau(u)= 58/13 ; 686*x^2 - 3026*y^2 + 4388*x*z + 686*z^2
(-49/2279 : -1008/2279 : 1) C1b (62986/2865 : 7039/2865 : 1)
** u= 32/369 ; tau(u)= 706/337 ; -226114*x^2 - 271298*y^2 + 499460*x*z - 226114*z^2
(196233/156017 : 63104/156017 : 1) C1b (-142672017/5458646 : 18139567/5458646 : 1)
** u= 37/159 ; tau(u)= 281/122 ; -28399*x^2 - 49193*y^2 + 80330*x*z - 28399*z^2
(19387/14154 : 1535/2022 : 1) C1b (-473558/51961 : -58151/51961 : 1)
** u= 37/455 ; tau(u)= 873/418 ; -348079*x^2 - 412681*y^2 + 763498*x*z - 348079*z^2
(10651/16478 : -3/16478 : 1) C1b (-12842114/7581975 : 2208851/7581975 : 1)
** u= 41/57 ; tau(u)= 73/16 ; 1169*x^2 - 4817*y^2 + 7010*x*z + 1169*z^2
(4351/5129 : 6592/5129 : 1) C1b (-48409/45223 : 6717/45223 : 1)
** u= 41/259 ; tau(u)= 477/218 ; -93367*x^2 - 132481*y^2 + 229210*x*z - 93367*z^2
(114091/58856 : -1671/58856 : 1) C1b (-67322/137291 : 21289/137291 : 1)
** u= 41/405 ; tau(u)= 769/364 ; -263311*x^2 - 326369*y^2 + 593042*x*z - 263311*z^2
(185/176 : 81/176 : 1) C1b (-247243/3331910 : -427973/3331910 : 1)
** u= 41/417 ; tau(u)= 793/376 ; -281071*x^2 - 346097*y^2 + 630530*x*z - 281071*z^2
(274781/438549 : -45062/438549 : 1) C1b (-50467798/8996371 : -6842721/8996371 : 1)
** u= 41/483 ; tau(u)= 925/442 ; -389047*x^2 - 464897*y^2 + 857306*x*z - 389047*z^2
(32819/49932 : -5843/49932 : 1) C1b (-2246674941/108668515 : -287279249/108668515 : 1)
** u= 45/16 ; tau(u)= 13/29 ; 343*x^2 + 1513*y^2 + 2194*x*z + 343*z^2
(-167/1030 : -51/1030 : 1) C1a (62986/2865 : 7039/2865 : 1)
** u= 49/51 ; tau(u)= 53/2 ; 2393*x^2 - 2801*y^2 + 5210*x*z + 2393*z^2
(-977/6072 : 4613/6072 : 1) C1b (-18901/18198 : -2423/18198 : 1)
** u= 49/127 ; tau(u)= 205/78 ; -9767*x^2 - 29857*y^2 + 44426*x*z - 9767*z^2
(16126/67387 : -6811/67387 : 1) C1b (-379630/119801 : -47439/119801 : 1)
** u= 49/201 ; tau(u)= 353/152 ; -43807*x^2 - 78401*y^2 + 127010*x*z - 43807*z^2
(23734/13997 : 10675/13997 : 1) C1b (941907/968251 : -128117/968251 : 1)
** u= 49/209 ; tau(u)= 369/160 ; -48799*x^2 - 84961*y^2 + 138562*x*z - 48799*z^2
(89041/122963 : -67956/122963 : 1) C1b (151110/126809 : 18743/126809 : 1)
** u= 49/213 ; tau(u)= 377/164 ; -51391*x^2 - 88337*y^2 + 144530*x*z - 51391*z^2
(13254/11063 : -8155/11063 : 1) C1b (12506862/4274581 : 1376609/4274581 : 1)
** u= 49/353 ; tau(u)= 657/304 ; -182431*x^2 - 246817*y^2 + 434050*x*z - 182431*z^2
(74923/137363 : 1806/137363 : 1) C1b (1504239/1266658 : -183749/1266658 : 1)
** u= 49/425 ; tau(u)= 801/376 ; -280351*x^2 - 358849*y^2 + 644002*x*z - 280351*z^2
(124897/143237 : -62370/143237 : 1) C1b (-2460695/1437281 : -412721/1437281 : 1)
** u= 52/179 ; tau(u)= 306/127 ; -29554*x^2 - 61378*y^2 + 96340*x*z - 29554*z^2
(1639/4541 : 678/4541 : 1) C1b (-132714787/16771491 : 16006097/16771491 : 1)
** u= 52/231 ; tau(u)= 410/179 ; -61378*x^2 - 104018*y^2 + 170804*x*z - 61378*z^2
(7015/6621 : 4622/6621 : 1) C1b (-602115/86198 : 75283/86198 : 1)
** u= 52/339 ; tau(u)= 626/287 ; -162034*x^2 - 227138*y^2 + 394580*x*z - 162034*z^2
(11/21 : 206/7077 : 1) C1b (5507/426 : 218603/143562 : 1)
** u= 53/2 ; tau(u)= 49/51 ; -2393*x^2 + 2801*y^2 + 5210*x*z - 2393*z^2
(-4507/888 : -5047/888 : 1) C1a (-24062/75991 : 11253/75991 : 1)
** u= 53/20 ; tau(u)= 13/33 ; 631*x^2 + 2009*y^2 + 2978*x*z + 631*z^2
(-3 : -8/7 : 1) C1a (-1574/1401 : -1469/9807 : 1)
** u= 53/165 ; tau(u)= 277/112 ; -22279*x^2 - 51641*y^2 + 79538*x*z - 22279*z^2
(9431/23193 : 8152/23193 : 1) C1b (40070/71809 : -8199/71809 : 1)
** u= 53/345 ; tau(u)= 637/292 ; -167719*x^2 - 235241*y^2 + 408578*x*z - 167719*z^2
(6408/9377 : 3521/9377 : 1) C1b (-5423857/215538 : 669193/215538 : 1)
** u= 53/425 ; tau(u)= 797/372 ; -273959*x^2 - 358441*y^2 + 638018*x*z - 273959*z^2
(30091/21241 : -10040/21241 : 1) C1b (-81459695/2565286 : -10144101/2565286 : 1)
** u= 58/13 ; tau(u)= 32/45 ; -686*x^2 + 3026*y^2 + 4388*x*z - 686*z^2
(47/297 : 16/297 : 1) C1a (-3502235/424382 : 398317/424382 : 1)
** u= 61/71 ; tau(u)= 81/10 ; 3521*x^2 - 6361*y^2 + 10282*x*z + 3521*z^2
(712/161 : 99/23 : 1) C1b (476226/47489 : 57877/47489 : 1)
** u= 61/87 ; tau(u)= 113/26 ; 2369*x^2 - 11417*y^2 + 16490*x*z + 2369*z^2
(-1896/13439 : 8339/94073 : 1) C1b (-569962/10411 : 440319/72877 : 1)
** u= 61/99 ; tau(u)= 137/38 ; 833*x^2 - 15881*y^2 + 22490*x*z + 833*z^2
(5636/12791 : 10599/12791 : 1) C1b (42274/19897 : -5191/19897 : 1)
** u= 61/481 ; tau(u)= 901/420 ; -349079*x^2 - 459001*y^2 + 815522*x*z - 349079*z^2
(16073/20091 : 8384/20091 : 1) C1b (615355870/52649977 : -72977151/52649977 : 1)
** u= 64/69 ; tau(u)= 74/5 ; 4046*x^2 - 5426*y^2 + 9572*x*z + 4046*z^2
(-705/2023 : -8/17 : 1) C1b (19870/6619 : -2867/6619 : 1)
** u= 64/153 ; tau(u)= 242/89 ; -11746*x^2 - 42722*y^2 + 62660*x*z - 11746*z^2
(20507/37859 : 25080/37859 : 1) C1b (-329287/143399 : 42701/143399 : 1)
** u= 64/213 ; tau(u)= 362/149 ; -40306*x^2 - 86642*y^2 + 135140*x*z - 40306*z^2
(109311/184631 : -100312/184631 : 1) C1b (328409362/28114181 : -36922491/28114181 : 1)
** u= 65/111 ; tau(u)= 157/46 ; -7*x^2 - 20417*y^2 + 28874*x*z - 7*z^2
(113/1992 : -563/1992 : 1) C1b (-33851/29650 : 4927/29650 : 1)
** u= 65/363 ; tau(u)= 661/298 ; -173383*x^2 - 259313*y^2 + 441146*x*z - 173383*z^2
(1211/2460 : 203/2460 : 1) C1b (-619846/2689 : -74553/2689 : 1)
** u= 68/75 ; tau(u)= 82/7 ; 4526*x^2 - 6626*y^2 + 11348*x*z + 4526*z^2
(241/51 : 250/51 : 1) C1b (-2530/2141 : -311/2141 : 1)
** u= 68/351 ; tau(u)= 634/283 ; -155554*x^2 - 241778*y^2 + 406580*x*z - 155554*z^2
(12337/16127 : 8326/16127 : 1) C1b (119720368514/25072490687 : 13434516383/25072490687 : 1)
** u= 73/16 ; tau(u)= 41/57 ; -1169*x^2 + 4817*y^2 + 7010*x*z - 1169*z^2
(3769/30054 : -7603/30054 : 1) C1a (45223/48409 : 6717/48409 : 1)
** u= 73/28 ; tau(u)= 17/45 ; 1279*x^2 + 3761*y^2 + 5618*x*z + 1279*z^2
(-209/863 : -36/863 : 1) C1a (1343/18910 : -2167/18910 : 1)
** u= 73/81 ; tau(u)= 89/8 ; 5201*x^2 - 7793*y^2 + 13250*x*z + 5201*z^2
(607/12628 : 1563/1804 : 1) C1b (143171/114675 : 5179/22935 : 1)
** u= 73/87 ; tau(u)= 101/14 ; 4937*x^2 - 9809*y^2 + 15530*x*z + 4937*z^2
(-7/148 : 97/148 : 1) C1b (37481/28698 : -6251/28698 : 1)
** u= 73/221 ; tau(u)= 369/148 ; -38479*x^2 - 92353*y^2 + 141490*x*z - 38479*z^2
(30947/47689 : 30240/47689 : 1) C1b (-1381506631/193975270 : -32961071/38795054 : 1)
** u= 73/241 ; tau(u)= 409/168 ; -51119*x^2 - 110833*y^2 + 172610*x*z - 51119*z^2
(12607/35239 : 6770/35239 : 1) C1b (-123757/194234 : 29799/194234 : 1)
** u= 73/259 ; tau(u)= 445/186 ; -63863*x^2 - 128833*y^2 + 203354*x*z - 63863*z^2
(1309/3184 : -839/3184 : 1) C1b (-210265690/31422071 : -25692729/31422071 : 1)
** u= 73/321 ; tau(u)= 569/248 ; -117679*x^2 - 200753*y^2 + 329090*x*z - 117679*z^2
(8033/3384 : -1055/23688 : 1) C1b (-13559/5505 : 2699/7707 : 1)
** u= 74/5 ; tau(u)= 64/69 ; -4046*x^2 + 5426*y^2 + 9572*x*z - 4046*z^2
(4817/1271 : 2776/1271 : 1) C1a (12874/21399 : -2417/21399 : 1)
** u= 80/101 ; tau(u)= 122/21 ; 5518*x^2 - 14002*y^2 + 21284*x*z + 5518*z^2
(-4345/27411 : 11068/27411 : 1) C1b (-1333481/10174 : -151053/10174 : 1)
** u= 80/357 ; tau(u)= 634/277 ; -147058*x^2 - 248498*y^2 + 408356*x*z - 147058*z^2
(4311/8659 : -2444/8659 : 1) C1b (17570774/3901275 : 1955473/3901275 : 1)
** u= 81/10 ; tau(u)= 61/71 ; -3521*x^2 + 6361*y^2 + 10282*x*z - 3521*z^2
(-1193/25276 : -20079/25276 : 1) C1a (-82354/46121 : 12557/46121 : 1)
** u= 82/7 ; tau(u)= 68/75 ; -4526*x^2 + 6626*y^2 + 11348*x*z - 4526*z^2
(7409/3381 : 1550/3381 : 1) C1a (-1386282/25367 : 168253/25367 : 1)
** u= 85/189 ; tau(u)= 293/104 ; -14407*x^2 - 64217*y^2 + 93074*x*z - 14407*z^2
(1171/3627 : 1702/3627 : 1) C1b (-7790830/1634327 : 909259/1634327 : 1)
** u= 85/237 ; tau(u)= 389/152 ; -38983*x^2 - 105113*y^2 + 158546*x*z - 38983*z^2
(930/379 : 397/379 : 1) C1b (5842095/923458 : -642851/923458 : 1)
** u= 85/267 ; tau(u)= 449/182 ; -59023*x^2 - 135353*y^2 + 208826*x*z - 59023*z^2
(21111/67958 : -2281/67958 : 1) C1b (225438/185195 : -28361/185195 : 1)
** u= 85/327 ; tau(u)= 569/242 ; -109903*x^2 - 206633*y^2 + 330986*x*z - 109903*z^2
(258/457 : 1441/3199 : 1) C1b (-29010/28639 : -38371/200473 : 1)
** u= 85/361 ; tau(u)= 637/276 ; -145127*x^2 - 253417*y^2 + 412994*x*z - 145127*z^2
(32008/39399 : -24073/39399 : 1) C1b (-133158730/4796897 : 15855741/4796897 : 1)
** u= 85/393 ; tau(u)= 701/308 ; -182503*x^2 - 301673*y^2 + 498626*x*z - 182503*z^2
(356151/760933 : 144616/760933 : 1) C1b (-20873794/2549965 : -2596167/2549965 : 1)
** u= 85/483 ; tau(u)= 881/398 ; -309583*x^2 - 459353*y^2 + 783386*x*z - 309583*z^2
(662365/355244 : -143357/355244 : 1) C1b (1106354/375029 : -122407/375029 : 1)
** u= 89/8 ; tau(u)= 73/81 ; -5201*x^2 + 7793*y^2 + 13250*x*z - 5201*z^2
(-491/2763 : -2750/2763 : 1) C1a (418649/18567 : 49421/18567 : 1)
** u= 89/121 ; tau(u)= 153/32 ; 5873*x^2 - 21361*y^2 + 31330*x*z + 5873*z^2
(743/1447 : 1518/1447 : 1) C1b (-68238/3199 : -7549/3199 : 1)
** u= 89/191 ; tau(u)= 293/102 ; -12887*x^2 - 65041*y^2 + 93770*x*z - 12887*z^2
(2804/19739 : 1019/19739 : 1) C1b (9302726/351863 : -1023651/351863 : 1)
** u= 89/273 ; tau(u)= 457/184 ; -59791*x^2 - 141137*y^2 + 216770*x*z - 59791*z^2
(378/883 : 349/883 : 1) C1b (-137383/725801 : -88421/725801 : 1)
** u= 89/357 ; tau(u)= 625/268 ; -135727*x^2 - 246977*y^2 + 398546*x*z - 135727*z^2
(261/515 : -5692/15965 : 1) C1b (24933/116437 : 400447/3609547 : 1)
** u= 89/399 ; tau(u)= 709/310 ; -184279*x^2 - 310481*y^2 + 510602*x*z - 184279*z^2
(2094/3983 : -1303/3983 : 1) C1b (10498534/7430231 : 1233213/7430231 : 1)
** u= 97/125 ; tau(u)= 153/28 ; 7841*x^2 - 21841*y^2 + 32818*x*z + 7841*z^2
(134/439 : -405/439 : 1) C1b (-1139932042/111605545 : -126219413/111605545 : 1)
** u= 97/237 ; tau(u)= 377/140 ; -29791*x^2 - 102929*y^2 + 151538*x*z - 29791*z^2
(447/137 : 164/137 : 1) C1b (96879234/16084031 : 10615337/16084031 : 1)
** u= 97/465 ; tau(u)= 833/368 ; -261439*x^2 - 423041*y^2 + 703298*x*z - 261439*z^2
(185363/392781 : 66808/392781 : 1) C1b (1873991/4548111 : -501631/4548111 : 1)
** u= 100/243 ; tau(u)= 386/143 ; -30898*x^2 - 108098*y^2 + 158996*x*z - 30898*z^2
(14609/19379 : -15750/19379 : 1) C1b (-1970023/272175 : -227809/272175 : 1)
** u= 100/383 ; tau(u)= 666/283 ; -150178*x^2 - 283378*y^2 + 453556*x*z - 150178*z^2
(41167/26777 : -22050/26777 : 1) C1b (6876318/3790205 : 775951/3790205 : 1)
** u= 101/14 ; tau(u)= 73/87 ; -4937*x^2 + 9809*y^2 + 15530*x*z - 4937*z^2
(-7233/34846 : -32195/34846 : 1) C1a (-55039/118742 : 16899/118742 : 1)
** u= 101/255 ; tau(u)= 409/154 ; -37231*x^2 - 119849*y^2 + 177482*x*z - 37231*z^2
(27583/104036 : 823/3356 : 1) C1b (-19525/79619 : -9619/79619 : 1)
** u= 101/261 ; tau(u)= 421/160 ; -40999*x^2 - 126041*y^2 + 187442*x*z - 40999*z^2
(13233/7979 : -8908/7979 : 1) C1b (-10020022/1574927 : 1176271/1574927 : 1)
** u= 109/115 ; tau(u)= 121/6 ; 11809*x^2 - 14569*y^2 + 26522*x*z + 11809*z^2
(-2180/4479 : -1529/4479 : 1) C1b (-980659/105581 : -116559/105581 : 1)
** u= 109/189 ; tau(u)= 269/80 ; -919*x^2 - 59561*y^2 + 84242*x*z - 919*z^2
(362/17217 : 2059/17217 : 1) C1b (-2614363/340053 : 289039/340053 : 1)
** u= 109/201 ; tau(u)= 293/92 ; -5047*x^2 - 68921*y^2 + 97730*x*z - 5047*z^2
(59/54 : 2609/2214 : 1) C1b (252347/226091 : -1483207/9269731 : 1)
** u= 113/26 ; tau(u)= 61/87 ; -2369*x^2 + 11417*y^2 + 16490*x*z - 2369*z^2
(-4519/10322 : -67765/72254 : 1) C1a (-15266/47245 : 8007/66143 : 1)
** u= 113/223 ; tau(u)= 333/110 ; -11431*x^2 - 86689*y^2 + 123658*x*z - 11431*z^2
(30362/257191 : -47907/257191 : 1) C1b (-1570215/480434 : 185153/480434 : 1)
** u= 113/399 ; tau(u)= 685/286 ; -150823*x^2 - 305633*y^2 + 481994*x*z - 150823*z^2
(54555/151646 : -15163/151646 : 1) C1b (268015/462167 : 52713/462167 : 1)
** u= 116/255 ; tau(u)= 394/139 ; -25186*x^2 - 116594*y^2 + 168692*x*z - 25186*z^2
(19549/8943 : -12374/8943 : 1) C1b (5667173/750470 : 620587/750470 : 1)
** u= 116/335 ; tau(u)= 554/219 ; -82466*x^2 - 210994*y^2 + 320372*x*z - 82466*z^2
(113/191 : 814/1337 : 1) C1b (-109967/94015 : -128661/658105 : 1)
** u= 121/6 ; tau(u)= 109/115 ; -11809*x^2 + 14569*y^2 + 26522*x*z - 11809*z^2
(6784/79263 : 64427/79263 : 1) C1a (-3417787/54355 : 427563/54355 : 1)
** u= 121/281 ; tau(u)= 441/160 ; -36559*x^2 - 143281*y^2 + 209122*x*z - 36559*z^2
(16802/88555 : -9933/88555 : 1) C1b (31930981/2209910 : 3516583/2209910 : 1)
** u= 121/327 ; tau(u)= 533/206 ; -70231*x^2 - 199217*y^2 + 298730*x*z - 70231*z^2
(305049/343142 : -287485/343142 : 1) C1b (180096818/29913821 : 19782737/29913821 : 1)
** u= 122/21 ; tau(u)= 80/101 ; -5518*x^2 + 14002*y^2 + 21284*x*z - 5518*z^2
(-987/26695 : -17924/26695 : 1) C1a (-2478290/109481 : 284757/109481 : 1)
** u= 125/263 ; tau(u)= 401/138 ; -22463*x^2 - 122713*y^2 + 176426*x*z - 22463*z^2
(2271/4556 : -130505/186796 : 1) C1b (-5755394/1108495 : 27145437/45448295 : 1)
** u= 125/483 ; tau(u)= 841/358 ; -240703*x^2 - 450953*y^2 + 722906*x*z - 240703*z^2
(76006/83871 : 58145/83871 : 1) C1b (20235922/2771617 : 2271569/2771617 : 1)
** u= 128/145 ; tau(u)= 162/17 ; 15806*x^2 - 25666*y^2 + 42628*x*z + 15806*z^2
(3257/12745 : 13248/12745 : 1) C1b (-820750/1563129 : -174589/1563129 : 1)
** u= 128/153 ; tau(u)= 178/25 ; 15134*x^2 - 30434*y^2 + 48068*x*z + 15134*z^2
(-865/7391 : -4176/7391 : 1) C1b (-127770/8632027 : -994111/8632027 : 1)
** u= 128/309 ; tau(u)= 490/181 ; -49138*x^2 - 174578*y^2 + 256484*x*z - 49138*z^2
(17791/73391 : 224/929 : 1) C1b (-824474/793379 : -139359/793379 : 1)
** u= 130/61 ; tau(u)= 8/69 ; 7378*x^2 + 9458*y^2 + 16964*x*z + 7378*z^2
(-9063/8731 : 4288/8731 : 1) C1a (1055950/529469 : -169121/529469 : 1)
** u= 136/165 ; tau(u)= 194/29 ; 16814*x^2 - 35954*y^2 + 56132*x*z + 16814*z^2
(-531/5897 : -3392/5897 : 1) C1b (-189070/65993 : 20777/65993 : 1)
** u= 136/213 ; tau(u)= 290/77 ; 6638*x^2 - 72242*y^2 + 102596*x*z + 6638*z^2
(1919/23763 : -10816/23763 : 1) C1b (492622/162503 : -57993/162503 : 1)
** u= 136/329 ; tau(u)= 522/193 ; -56002*x^2 - 197986*y^2 + 290980*x*z - 56002*z^2
(31001/29449 : 28716/29449 : 1) C1b (54320910/22662643 : 6103025/22662643 : 1)
** u= 137/38 ; tau(u)= 61/99 ; -833*x^2 + 15881*y^2 + 22490*x*z - 833*z^2
(7351/406496 : 66621/406496 : 1) C1a (-6280893/575749 : -693283/575749 : 1)
** u= 137/66 ; tau(u)= 5/71 ; 8687*x^2 + 10057*y^2 + 18794*x*z + 8687*z^2
(-1351/1944 : -259/1944 : 1) C1a (-1090126/331411 : 123573/331411 : 1)
** u= 137/397 ; tau(u)= 657/260 ; -116431*x^2 - 296449*y^2 + 450418*x*z - 116431*z^2
(506579/279793 : 289512/279793 : 1) C1b (-990154/48229 : 113893/48229 : 1)
** u= 145/64 ; tau(u)= 17/81 ; 7903*x^2 + 12833*y^2 + 21314*x*z + 7903*z^2
(-3593/1595 : 36/1595 : 1) C1a (-820750/1563129 : -174589/1563129 : 1)
** u= 145/189 ; tau(u)= 233/44 ; 17153*x^2 - 50417*y^2 + 75314*x*z + 17153*z^2
(583595/2242589 : -114396/131917 : 1) C1b (56086/154861 : 19837/154861 : 1)
** u= 145/231 ; tau(u)= 317/86 ; 6233*x^2 - 85697*y^2 + 121514*x*z + 6233*z^2
(2 : 127/71 : 1) C1b (3150/17027 : -136001/1208917 : 1)
** u= 145/387 ; tau(u)= 629/242 ; -96103*x^2 - 278513*y^2 + 416666*x*z - 96103*z^2
(10939/2676 : 179/2676 : 1) C1b (705571013/452172653 : -83892539/452172653 : 1)
** u= 145/483 ; tau(u)= 821/338 ; -207463*x^2 - 445553*y^2 + 695066*x*z - 207463*z^2
(164/343 : 143/343 : 1) C1b (174159/326335 : 36883/326335 : 1)
** u= 148/267 ; tau(u)= 386/119 ; -6418*x^2 - 120674*y^2 + 170900*x*z - 6418*z^2
(26489/153951 : 66914/153951 : 1) C1b (-84325/86309 : -13465/86309 : 1)
** u= 148/423 ; tau(u)= 698/275 ; -129346*x^2 - 335954*y^2 + 509108*x*z - 129346*z^2
(359/557 : -366/557 : 1) C1b (48068346/5351999 : -5325637/5351999 : 1)
** u= 148/495 ; tau(u)= 842/347 ; -218914*x^2 - 468146*y^2 + 730868*x*z - 218914*z^2
(3595/10289 : -10382/72023 : 1) C1b (11230/10069 : 10177/70483 : 1)
** u= 149/231 ; tau(u)= 313/82 ; 8753*x^2 - 84521*y^2 + 120170*x*z + 8753*z^2
(-3253/53722 : -7177/53722 : 1) C1b (-28224210/8773423 : -3176645/8773423 : 1)
** u= 149/233 ; tau(u)= 317/84 ; 8089*x^2 - 86377*y^2 + 122690*x*z + 8089*z^2
(224763/448057 : -408136/448057 : 1) C1b (-4119937/530759 : 451929/530759 : 1)
** u= 153/28 ; tau(u)= 97/125 ; -7841*x^2 + 21841*y^2 + 32818*x*z - 7841*z^2
(9487/703 : 4740/703 : 1) C1a (-273383/70263 : -33637/70263 : 1)
** u= 153/32 ; tau(u)= 89/121 ; -5873*x^2 + 21361*y^2 + 31330*x*z - 5873*z^2
(3797/25331 : -6270/25331 : 1) C1a (-329287/143399 : 42701/143399 : 1)
** u= 153/64 ; tau(u)= 25/89 ; 7567*x^2 + 15217*y^2 + 24034*x*z + 7567*z^2
(-3635/9949 : -1152/9949 : 1) C1a (-127770/8632027 : -994111/8632027 : 1)
** u= 157/46 ; tau(u)= 65/111 ; 7*x^2 + 20417*y^2 + 28874*x*z + 7*z^2
(-3276/113 : -721/113 : 1) C1a (-711154/259349 : -82863/259349 : 1)
** u= 157/231 ; tau(u)= 305/74 ; 13697*x^2 - 82073*y^2 + 117674*x*z + 13697*z^2
(363579/12143342 : -5564323/12143342 : 1) C1b (-20785378/21935503 : 3131493/21935503 : 1)
** u= 157/357 ; tau(u)= 557/200 ; -55351*x^2 - 230249*y^2 + 334898*x*z - 55351*z^2
(509/657 : -566/657 : 1) C1b (21092203/433330 : 2334269/433330 : 1)
** u= 157/361 ; tau(u)= 565/204 ; -58583*x^2 - 235993*y^2 + 343874*x*z - 58583*z^2
(300601/130855 : -175028/130855 : 1) C1b (1081074850/4254943 : 120054057/4254943 : 1)
** u= 160/189 ; tau(u)= 218/29 ; 23918*x^2 - 45842*y^2 + 73124*x*z + 23918*z^2
(643/17539 : -13368/17539 : 1) C1b (-155602/152475 : 20779/152475 : 1)
** u= 160/301 ; tau(u)= 442/141 ; -14162*x^2 - 155602*y^2 + 220964*x*z - 14162*z^2
(1301/15605 : -2552/15605 : 1) C1b (17334715/1596853 : 1898481/1596853 : 1)
** u= 160/357 ; tau(u)= 554/197 ; -52018*x^2 - 229298*y^2 + 332516*x*z - 52018*z^2
(1199/7087 : -776/7087 : 1) C1b (-5050810/3142447 : 704199/3142447 : 1)
** u= 162/17 ; tau(u)= 128/145 ; -15806*x^2 + 25666*y^2 + 42628*x*z - 15806*z^2
(79/1393 : -144/199 : 1) C1a (81839/74711 : 10441/74711 : 1)
** u= 162/73 ; tau(u)= 16/89 ; 10402*x^2 + 15586*y^2 + 26500*x*z + 10402*z^2
(-24217/29837 : -15588/29837 : 1) C1a (143171/114675 : 5179/22935 : 1)
** u= 164/171 ; tau(u)= 178/7 ; 26798*x^2 - 31586*y^2 + 58580*x*z + 26798*z^2
(65479/50449 : 109194/50449 : 1) C1b (-1460834/279033 : 170009/279033 : 1)
** u= 164/311 ; tau(u)= 458/147 ; -16322*x^2 - 166546*y^2 + 236660*x*z - 16322*z^2
(37059/295021 : 82894/295021 : 1) C1b (-11945177/167449 : -1312227/167449 : 1)
** u= 169/309 ; tau(u)= 449/140 ; -10639*x^2 - 162401*y^2 + 230162*x*z - 10639*z^2
(5429/38179 : 14012/38179 : 1) C1b (5342070/504937 : -585509/504937 : 1)
** u= 169/337 ; tau(u)= 505/168 ; -27887*x^2 - 198577*y^2 + 283586*x*z - 27887*z^2
(8/21 : 13/21 : 1) C1b (-26707490/4326289 : 3022269/4326289 : 1)
** u= 169/489 ; tau(u)= 809/320 ; -176239*x^2 - 449681*y^2 + 683042*x*z - 176239*z^2
(88001/314643 : 2132/44949 : 1) C1b (-294947958/351484375 : -58298831/351484375 : 1)
** u= 170/83 ; tau(u)= 4/87 ; 13762*x^2 + 15122*y^2 + 28916*x*z + 13762*z^2
(-3063/2645 : -766/2645 : 1) C1a (-6025/42238 : -5057/42238 : 1)
** u= 173/86 ; tau(u)= 1/87 ; 14791*x^2 + 15137*y^2 + 29930*x*z + 14791*z^2
(-287/264 : 35/264 : 1) C1a (-141815/167686 : 20355/167686 : 1)
** u= 173/261 ; tau(u)= 349/88 ; 14441*x^2 - 106313*y^2 + 151730*x*z + 14441*z^2
(-14393/826771 : -275490/826771 : 1) C1b (-3967838/1957939 : 467867/1957939 : 1)
** u= 173/401 ; tau(u)= 629/228 ; -74039*x^2 - 291673*y^2 + 425570*x*z - 74039*z^2
(129217/48786 : 65995/48786 : 1) C1b (-537485/339826 : 76065/339826 : 1)
** u= 173/435 ; tau(u)= 697/262 ; -107359*x^2 - 348521*y^2 + 515738*x*z - 107359*z^2
(2336/2049 : 2027/2049 : 1) C1b (29785734/2869079 : -3283739/2869079 : 1)
** u= 178/7 ; tau(u)= 164/171 ; -26798*x^2 + 31586*y^2 + 58580*x*z - 26798*z^2
(17377/26853 : 1598/26853 : 1) C1a (-224214/15553 : 29053/15553 : 1)
** u= 178/25 ; tau(u)= 128/153 ; -15134*x^2 + 30434*y^2 + 48068*x*z - 15134*z^2
(829/6323 : -3456/6323 : 1) C1a (-2169130/2189029 : 408823/2189029 : 1)
** u= 181/277 ; tau(u)= 373/96 ; 14329*x^2 - 120697*y^2 + 171890*x*z + 14329*z^2
(8197/99007 : -48244/99007 : 1) C1b (74023610/3270983 : 8169975/3270983 : 1)
** u= 181/351 ; tau(u)= 521/170 ; -25039*x^2 - 213641*y^2 + 304202*x*z - 25039*z^2
(67181/576926 : 2553/11774 : 1) C1b (-28012445518/493156545 : -3082082509/493156545 : 1)
** u= 181/477 ; tau(u)= 773/296 ; -142471*x^2 - 422297*y^2 + 630290*x*z - 142471*z^2
(55271/32411 : 35898/32411 : 1) C1b (14270078/11054561 : 1794253/11054561 : 1)
** u= 185/297 ; tau(u)= 409/112 ; 9137*x^2 - 142193*y^2 + 201506*x*z + 9137*z^2
(-2362/916715 : 225681/916715 : 1) C1b (238787/908267 : 104059/908267 : 1)
** u= 185/431 ; tau(u)= 677/246 ; -86807*x^2 - 337297*y^2 + 492554*x*z - 86807*z^2
(1374/2131 : -1619/2131 : 1) C1b (-86474759/8621041 : 9834303/8621041 : 1)
** u= 185/441 ; tau(u)= 697/256 ; -96847*x^2 - 354737*y^2 + 520034*x*z - 96847*z^2
(3075/10757 : 3784/10757 : 1) C1b (5990650/5276031 : 803383/5276031 : 1)
** u= 193/343 ; tau(u)= 493/150 ; -7751*x^2 - 198049*y^2 + 280298*x*z - 7751*z^2
(3413/55668 : 12131/55668 : 1) C1b (186463/193255 : -29001/193255 : 1)
** u= 193/459 ; tau(u)= 725/266 ; -104263*x^2 - 384113*y^2 + 562874*x*z - 104263*z^2
(100858/314947 : 129855/314947 : 1) C1b (45618614/12084195 : 5012081/12084195 : 1)
** u= 194/29 ; tau(u)= 136/165 ; -16814*x^2 + 35954*y^2 + 56132*x*z - 16814*z^2
(11/393 : 256/393 : 1) C1a (-469910/323867 : -74267/323867 : 1)
** u= 196/243 ; tau(u)= 290/47 ; 33998*x^2 - 79682*y^2 + 122516*x*z + 33998*z^2
(-335/1471 : -462/1471 : 1) C1b (2331669/448915 : 284669/448915 : 1)
** u= 196/279 ; tau(u)= 362/83 ; 24638*x^2 - 117266*y^2 + 169460*x*z + 24638*z^2
(-1753/12513 : -14/129 : 1) C1b (-13970001/1225913 : 1532143/1225913 : 1)
** u= 196/323 ; tau(u)= 450/127 ; 6158*x^2 - 170242*y^2 + 240916*x*z + 6158*z^2
(7621/30539 : 19110/30539 : 1) C1b (-36008646/3824515 : 3954869/3824515 : 1)
** u= 196/391 ; tau(u)= 586/195 ; -37634*x^2 - 267346*y^2 + 381812*x*z - 37634*z^2
(65739/412309 : -119042/412309 : 1) C1b (1960135/2025778 : -294441/2025778 : 1)
** u= 197/231 ; tau(u)= 265/34 ; 36497*x^2 - 67913*y^2 + 109034*x*z + 36497*z^2
(-181/54 : -59/54 : 1) C1b (410144150/21908903 : -48755903/21908903 : 1)
** u= 200/437 ; tau(u)= 674/237 ; -72338*x^2 - 341938*y^2 + 494276*x*z - 72338*z^2
(207149/1296089 : 153760/1296089 : 1) C1b (24871490/7425797 : 2755191/7425797 : 1)
** u= 200/469 ; tau(u)= 738/269 ; -104722*x^2 - 399922*y^2 + 584644*x*z - 104722*z^2
(6979/13019 : 8700/13019 : 1) C1b (794795/1119606 : 139307/1119606 : 1)
** u= 205/78 ; tau(u)= 49/127 ; 9767*x^2 + 29857*y^2 + 44426*x*z + 9767*z^2
(-15871/39636 : -18431/39636 : 1) C1a (-152123/47867 : -16743/47867 : 1)
** u= 208/369 ; tau(u)= 530/161 ; -8578*x^2 - 229058*y^2 + 324164*x*z - 8578*z^2
(3097/28549 : -9708/28549 : 1) C1b (-27507/84362 : 9793/84362 : 1)
** u= 208/381 ; tau(u)= 554/173 ; -16594*x^2 - 247058*y^2 + 350180*x*z - 16594*z^2
(9041/549 : 8644/3843 : 1) C1b (1008474/876373 : -1000673/6134611 : 1)
** u= 208/393 ; tau(u)= 578/185 ; -25186*x^2 - 265634*y^2 + 377348*x*z - 25186*z^2
(52337/720109 : 64124/720109 : 1) C1b (-580189/477774 : -85123/477774 : 1)
** u= 212/411 ; tau(u)= 610/199 ; -34258*x^2 - 292898*y^2 + 417044*x*z - 34258*z^2
(10155/92401 : -18038/92401 : 1) C1b (-317453/252045 : -46273/252045 : 1)
** u= 218/29 ; tau(u)= 160/189 ; -23918*x^2 + 45842*y^2 + 73124*x*z - 23918*z^2
(-643/17539 : -13368/17539 : 1) C1a (2464755/362762 : -275671/362762 : 1)
** u= 232/301 ; tau(u)= 370/69 ; 44302*x^2 - 127378*y^2 + 190724*x*z + 44302*z^2
(8721/20753 : -21148/20753 : 1) C1b (267190/6350203 : -722907/6350203 : 1)
** u= 233/44 ; tau(u)= 145/189 ; -17153*x^2 + 50417*y^2 + 75314*x*z - 17153*z^2
(66101/1189261 : -604356/1189261 : 1) C1a (11426758/612627 : 1271749/612627 : 1)
** u= 233/237 ; tau(u)= 241/4 ; 54257*x^2 - 58049*y^2 + 112370*x*z + 54257*z^2
(-224/369 : 119/369 : 1) C1b (-1169163/3253981 : -368587/3253981 : 1)
** u= 233/483 ; tau(u)= 733/250 ; -70711*x^2 - 412289*y^2 + 591578*x*z - 70711*z^2
(27278/22837 : 26015/22837 : 1) C1b (2242453/155277 : 245821/155277 : 1)
** u= 233/489 ; tau(u)= 745/256 ; -76783*x^2 - 423953*y^2 + 609314*x*z - 76783*z^2
(82075/129261 : 104888/129261 : 1) C1b (15810062/7396945 : -1830813/7396945 : 1)
** u= 234/115 ; tau(u)= 4/119 ; 26434*x^2 + 28306*y^2 + 54772*x*z + 26434*z^2
(-27653/21163 : -174/21163 : 1) C1a (118215/362734 : -55367/362734 : 1)
** u= 241/4 ; tau(u)= 233/237 ; -54257*x^2 + 58049*y^2 + 112370*x*z - 54257*z^2
(-2648/123 : 2683/123 : 1) C1a (-5810710/451193 : 773805/451193 : 1)
** u= 241/243 ; tau(u)= 245/2 ; 58073*x^2 - 60017*y^2 + 118106*x*z + 58073*z^2
(1670/311 : 1953/311 : 1) C1b (269185/1502577 : -213293/1502577 : 1)
** u= 241/297 ; tau(u)= 353/56 ; 51809*x^2 - 118337*y^2 + 182690*x*z + 51809*z^2
(-11/1153 : -750/1153 : 1) C1b (-1237059/1882862 : -221629/1882862 : 1)
** u= 241/387 ; tau(u)= 533/146 ; 15449*x^2 - 241457*y^2 + 342170*x*z + 15449*z^2
(-7978/191857 : 13789/191857 : 1) C1b (101778/23129 : 11549/23129 : 1)
** u= 241/429 ; tau(u)= 617/188 ; -12607*x^2 - 310001*y^2 + 438770*x*z - 12607*z^2
(34789/286214 : -103501/286214 : 1) C1b (533337863/140880359 : -59984797/140880359 : 1)
** u= 241/441 ; tau(u)= 641/200 ; -21919*x^2 - 330881*y^2 + 468962*x*z - 21919*z^2
(18989/176181 : -51590/176181 : 1) C1b (-590442971/8835310 : -64762253/8835310 : 1)
** u= 242/89 ; tau(u)= 64/153 ; 11746*x^2 + 42722*y^2 + 62660*x*z + 11746*z^2
(-4161/6553 : 4840/6553 : 1) C1a (-68238/3199 : -7549/3199 : 1)
** u= 242/119 ; tau(u)= 4/123 ; 28306*x^2 + 30242*y^2 + 58580*x*z + 28306*z^2
(-30593/27883 : 6974/27883 : 1) C1a (6856186/310573 : 898341/310573 : 1)
** u= 244/363 ; tau(u)= 482/119 ; 31214*x^2 - 204002*y^2 + 291860*x*z + 31214*z^2
(5689/24147 : -17050/24147 : 1) C1b (-491251/836643 : 101719/836643 : 1)
** u= 244/459 ; tau(u)= 674/215 ; -32914*x^2 - 361826*y^2 + 513812*x*z - 32914*z^2
(1611/24893 : -586/24893 : 1) C1b (18231190/1664653 : -1996619/1664653 : 1)
** u= 245/2 ; tau(u)= 241/243 ; -58073*x^2 + 60017*y^2 + 118106*x*z - 58073*z^2
(2246/2799 : 301/2799 : 1) C1a (180258/523603 : 59717/523603 : 1)
** u= 245/116 ; tau(u)= 13/129 ; 26743*x^2 + 33113*y^2 + 60194*x*z + 26743*z^2
(-4439/6229 : -1736/6229 : 1) C1a (2754239/655729 : 384979/655729 : 1)
** u= 245/429 ; tau(u)= 613/184 ; -7687*x^2 - 308057*y^2 + 435794*x*z - 7687*z^2
(1975/51227 : 8806/51227 : 1) C1b (-2818030/3703383 : 513851/3703383 : 1)
** u= 245/471 ; tau(u)= 697/226 ; -42127*x^2 - 383657*y^2 + 545834*x*z - 42127*z^2
(524099/1159300 : -828667/1159300 : 1) C1b (3058818986/127210921 : -335081697/127210921 : 1)
** u= 257/120 ; tau(u)= 17/137 ; 28511*x^2 + 37249*y^2 + 66338*x*z + 28511*z^2
(-118/205 : -3091/39565 : 1) C1a (41837/2002 : -1013283/386386 : 1)
** u= 257/273 ; tau(u)= 289/16 ; 65537*x^2 - 83009*y^2 + 149570*x*z + 65537*z^2
(-79667/136379 : -10880/136379 : 1) C1b (283913/69161 : 39581/69161 : 1)
** u= 257/345 ; tau(u)= 433/88 ; 50561*x^2 - 172001*y^2 + 253538*x*z + 50561*z^2
(11969/1537 : -8362/1537 : 1) C1b (-1344035/194846 : -147429/194846 : 1)
** u= 257/351 ; tau(u)= 445/94 ; 48377*x^2 - 180353*y^2 + 264074*x*z + 48377*z^2
(-88/465 : 1307/47895 : 1) C1b (-51322/32315 : 635779/3328445 : 1)
** u= 257/421 ; tau(u)= 585/164 ; 12257*x^2 - 288433*y^2 + 408274*x*z + 12257*z^2
(158327/123421 : -171384/123421 : 1) C1b (-704133/275018 : -81947/275018 : 1)
** u= 260/447 ; tau(u)= 634/187 ; -2338*x^2 - 332018*y^2 + 469556*x*z - 2338*z^2
(48793/9011 : 24586/9011 : 1) C1b (494930/1071023 : -128921/1071023 : 1)
** u= 260/463 ; tau(u)= 666/203 ; -14818*x^2 - 361138*y^2 + 511156*x*z - 14818*z^2
(267713/1637035 : -712326/1637035 : 1) C1b (-22846552754/372617901 : 2503702663/372617901 : 1)
** u= 265/34 ; tau(u)= 197/231 ; -36497*x^2 + 67913*y^2 + 109034*x*z - 36497*z^2
(246538/1422907 : 746677/1422907 : 1) C1a (4931875/2474181 : 550531/2474181 : 1)
** u= 265/399 ; tau(u)= 533/134 ; 34313*x^2 - 248177*y^2 + 354314*x*z + 34313*z^2
(-3262/36285 : 3811/36285 : 1) C1b (7681149/1188685 : 867367/1188685 : 1)
** u= 265/451 ; tau(u)= 637/186 ; 1033*x^2 - 336577*y^2 + 475994*x*z + 1033*z^2
(2459/60618 : 14903/60618 : 1) C1b (1960366/3376135 : 427797/3376135 : 1)
** u= 269/80 ; tau(u)= 109/189 ; 919*x^2 + 59561*y^2 + 84242*x*z + 919*z^2
(-3253/91699 : -17088/91699 : 1) C1a (658709/293410 : 79267/293410 : 1)
** u= 269/273 ; tau(u)= 277/4 ; 72329*x^2 - 76697*y^2 + 149090*x*z + 72329*z^2
(-11751/2486 : 8903/2486 : 1) C1b (-63820019/1192670 : 1623621/238534 : 1)
** u= 269/375 ; tau(u)= 481/106 ; 49889*x^2 - 208889*y^2 + 303722*x*z + 49889*z^2
(-774/39907 : -2617/5701 : 1) C1b (-4386906/2111635 : -504559/2111635 : 1)
** u= 269/465 ; tau(u)= 661/196 ; -4471*x^2 - 360089*y^2 + 509282*x*z - 4471*z^2
(1282730/988959 : 1327249/988959 : 1) C1b (2585804454/441180365 : -286765411/441180365 : 1)
** u= 272/365 ; tau(u)= 458/93 ; 56686*x^2 - 192466*y^2 + 283748*x*z + 56686*z^2
(-6691/40577 : 9892/40577 : 1) C1b (818978/1417073 : 198147/1417073 : 1)
** u= 277/4 ; tau(u)= 269/273 ; -72329*x^2 + 76697*y^2 + 149090*x*z - 72329*z^2
(-30353/134787 : 161104/134787 : 1) C1a (-2140387/144890 : -56841/28978 : 1)
** u= 277/112 ; tau(u)= 53/165 ; 22279*x^2 + 51641*y^2 + 79538*x*z + 22279*z^2
(-4943/7425 : 4712/7425 : 1) C1a (239290/132889 : -34791/132889 : 1)
** u= 277/291 ; tau(u)= 305/14 ; 76337*x^2 - 92633*y^2 + 169754*x*z + 76337*z^2
(-126042/311873 : 145637/311873 : 1) C1b (-15713/48630 : -5467/48630 : 1)
** u= 277/441 ; tau(u)= 605/164 ; 22937*x^2 - 312233*y^2 + 442754*x*z + 22937*z^2
(571/121881 : 34496/121881 : 1) C1b (-302977910/18191827 : 33169813/18191827 : 1)
** u= 277/445 ; tau(u)= 613/168 ; 20281*x^2 - 319321*y^2 + 452498*x*z + 20281*z^2
(233919/1902086 : 929387/1902086 : 1) C1b (1820911283/24151115 : 199681827/24151115 : 1)
** u= 281/122 ; tau(u)= 37/159 ; 28399*x^2 + 49193*y^2 + 80330*x*z + 28399*z^2
(-32472/50317 : -24449/50317 : 1) C1a (-9205/458 : -1065/458 : 1)
** u= 281/307 ; tau(u)= 333/26 ; 77609*x^2 - 109537*y^2 + 189850*x*z + 77609*z^2
(77863/634478 : -612489/634478 : 1) C1b (359431/274743 : -64747/274743 : 1)
** u= 281/381 ; tau(u)= 481/100 ; 58961*x^2 - 211361*y^2 + 310322*x*z + 58961*z^2
(21333/463 : 11896/463 : 1) C1b (48336877/3640493 : -5483439/3640493 : 1)
** u= 289/16 ; tau(u)= 257/273 ; -65537*x^2 + 83009*y^2 + 149570*x*z - 65537*z^2
(75249/24521 : -40256/24521 : 1) C1a (-1089717/312046 : 155467/312046 : 1)
** u= 289/327 ; tau(u)= 365/38 ; 80633*x^2 - 130337*y^2 + 216746*x*z + 80633*z^2
(-242591/674168 : 213571/674168 : 1) C1b (45369/887185 : -107441/887185 : 1)
** u= 289/365 ; tau(u)= 441/76 ; 71969*x^2 - 182929*y^2 + 278002*x*z + 71969*z^2
(69605/426163 : 344148/426163 : 1) C1b (-17046815/27310958 : 3200687/27310958 : 1)
** u= 289/441 ; tau(u)= 593/152 ; 37313*x^2 - 305441*y^2 + 435170*x*z + 37313*z^2
(-16379/189729 : 1666/189729 : 1) C1b (6159496421/1386286653 : 706372499/1386286653 : 1)
** u= 289/453 ; tau(u)= 617/164 ; 29729*x^2 - 326897*y^2 + 464210*x*z + 29729*z^2
(-308911/10346043 : -2281400/10346043 : 1) C1b (269518030/20108541 : -29789135/20108541 : 1)
** u= 290/47 ; tau(u)= 196/243 ; -33998*x^2 + 79682*y^2 + 122516*x*z - 33998*z^2
(-62651/854813 : 629118/854813 : 1) C1a (11519395/643982 : 1296463/643982 : 1)
** u= 290/77 ; tau(u)= 136/213 ; -6638*x^2 + 72242*y^2 + 102596*x*z - 6638*z^2
(23131/361149 : 13036/361149 : 1) C1a (8188675/2482834 : 921711/2482834 : 1)
** u= 292/299 ; tau(u)= 306/7 ; 85166*x^2 - 93538*y^2 + 178900*x*z + 85166*z^2
(36949/125819 : -156678/125819 : 1) C1b (-9580954/3547113 : -1080427/3547113 : 1)
** u= 292/387 ; tau(u)= 482/95 ; 67214*x^2 - 214274*y^2 + 317588*x*z + 67214*z^2
(26263/72601 : 68526/72601 : 1) C1b (14453090/4068567 : -1773239/4068567 : 1)
** u= 293/92 ; tau(u)= 109/201 ; 5047*x^2 + 68921*y^2 + 97730*x*z + 5047*z^2
(-227/517 : 15508/21197 : 1) C1a (-306629/128805 : 293395/1056201 : 1)
** u= 293/102 ; tau(u)= 89/191 ; 12887*x^2 + 65041*y^2 + 93770*x*z + 12887*z^2
(-632/1067 : 817/1067 : 1) C1a (-278498/946901 : 104961/946901 : 1)
** u= 293/104 ; tau(u)= 85/189 ; 14407*x^2 + 64217*y^2 + 93074*x*z + 14407*z^2
(-9527/3908 : -5493/3908 : 1) C1a (2215633/343727 : -254251/343727 : 1)
** u= 293/483 ; tau(u)= 673/190 ; 13649*x^2 - 380729*y^2 + 538778*x*z + 13649*z^2
(-54594/3258197 : -359113/3258197 : 1) C1b (13750170/10341253 : 1906909/10341253 : 1)
** u= 296/321 ; tau(u)= 346/25 ; 86366*x^2 - 118466*y^2 + 207332*x*z + 86366*z^2
(13357/103173 : 14500/14739 : 1) C1b (-67778383/4446095 : 473173/261535 : 1)
** u= 296/369 ; tau(u)= 442/73 ; 76958*x^2 - 184706*y^2 + 282980*x*z + 76958*z^2
(-33769/150959 : 46476/150959 : 1) C1b (33774661/12648258 : 4461449/12648258 : 1)
** u= 296/393 ; tau(u)= 490/97 ; 68798*x^2 - 221282*y^2 + 327716*x*z + 68798*z^2
(28953/197413 : -144368/197413 : 1) C1b (-572455/1042103 : 120827/1042103 : 1)
** u= 296/429 ; tau(u)= 562/133 ; 52238*x^2 - 280466*y^2 + 403460*x*z + 52238*z^2
(-4831/95989 : 32456/95989 : 1) C1b (119671/404038 : -48139/404038 : 1)
** u= 305/14 ; tau(u)= 277/291 ; -76337*x^2 + 92633*y^2 + 169754*x*z - 76337*z^2
(93935/177842 : -52169/177842 : 1) C1a (254515/1217901 : 140399/1217901 : 1)
** u= 305/74 ; tau(u)= 157/231 ; -13697*x^2 + 82073*y^2 + 117674*x*z - 13697*z^2
(-952/509 : 943/509 : 1) C1a (158598250/5379367 : 17423193/5379367 : 1)
** u= 305/381 ; tau(u)= 457/76 ; 81473*x^2 - 197297*y^2 + 301874*x*z + 81473*z^2
(5229475/12900293 : -1933772/1842899 : 1) C1b (1705529/92329 : 197307/92329 : 1)
** u= 306/7 ; tau(u)= 292/299 ; -85166*x^2 + 93538*y^2 + 178900*x*z - 85166*z^2
(-15341/404539 : 401358/404539 : 1) C1a (-2896024242/129476875 : -75365101/25895375 : 1)
** u= 306/127 ; tau(u)= 52/179 ; 29554*x^2 + 61378*y^2 + 96340*x*z + 29554*z^2
(-22699/37949 : 20262/37949 : 1) C1a (-2321121/292255 : -51871/58451 : 1)
** u= 313/82 ; tau(u)= 149/231 ; -8753*x^2 + 84521*y^2 + 120170*x*z - 8753*z^2
(20802/286817 : 9013/286817 : 1) C1a (113951/108993 : -16667/108993 : 1)
** u= 313/429 ; tau(u)= 545/116 ; 71057*x^2 - 270113*y^2 + 394994*x*z + 71057*z^2
(-57993/604789 : 214048/604789 : 1) C1b (2117015/1816834 : -337041/1816834 : 1)
** u= 317/84 ; tau(u)= 149/233 ; -8089*x^2 + 86377*y^2 + 122690*x*z - 8089*z^2
(-1431821/3099476 : 2719417/3099476 : 1) C1a (675991/427097 : -85077/427097 : 1)
** u= 317/86 ; tau(u)= 145/231 ; -6233*x^2 + 85697*y^2 + 121514*x*z - 6233*z^2
(-2 : -127/71 : 1) C1a (-459161/61306 : 3629547/4352726 : 1)
** u= 317/405 ; tau(u)= 493/88 ; 85001*x^2 - 227561*y^2 + 343538*x*z + 85001*z^2
(-4471/37668 : 16829/37668 : 1) C1b (-2365287/662233 : 19951/50941 : 1)
** u= 317/433 ; tau(u)= 549/116 ; 73577*x^2 - 274489*y^2 + 401890*x*z + 73577*z^2
(-4083136/22588237 : 355635/3226891 : 1) C1b (103857/228505 : -5965/45701 : 1)
** u= 317/471 ; tau(u)= 625/154 ; 53057*x^2 - 343193*y^2 + 491114*x*z + 53057*z^2
(-5571/66166 : 12415/66166 : 1) C1b (39602026/5779385 : 4474839/5779385 : 1)
** u= 320/421 ; tau(u)= 522/101 ; 81998*x^2 - 252082*y^2 + 374884*x*z + 81998*z^2
(-44323/40194133 : 3266616/5742019 : 1) C1b (-47102815/31095706 : -5663303/31095706 : 1)
** u= 320/441 ; tau(u)= 562/121 ; 73118*x^2 - 286562*y^2 + 418244*x*z + 73118*z^2
(-1213/8363 : -1848/8363 : 1) C1b (-225213/22702 : 24731/22702 : 1)
** u= 325/154 ; tau(u)= 17/171 ; 47143*x^2 + 58193*y^2 + 105914*x*z + 47143*z^2
(-581/694 : 265/694 : 1) C1a (-700785/946 : 86981/946 : 1)
** u= 333/26 ; tau(u)= 281/307 ; -77609*x^2 + 109537*y^2 + 189850*x*z - 77609*z^2
(3419/45008 : 34305/45008 : 1) C1a (4731075/4910653 : 635585/4910653 : 1)
** u= 333/110 ; tau(u)= 113/223 ; 11431*x^2 + 86689*y^2 + 123658*x*z + 11431*z^2
(-64712/598135 : 86517/598135 : 1) C1a (2902999/30505 : 319507/30505 : 1)
** u= 337/353 ; tau(u)= 369/16 ; 113057*x^2 - 135649*y^2 + 249730*x*z + 113057*z^2
(-91807/329713 : -204702/329713 : 1) C1b (3974726290/163968803 : -506071925/163968803 : 1)
** u= 340/431 ; tau(u)= 522/91 ; 99038*x^2 - 255922*y^2 + 388084*x*z + 99038*z^2
(4993/161267 : 106278/161267 : 1) C1b (3085638/313133 : 360491/313133 : 1)
** u= 346/25 ; tau(u)= 296/321 ; -86366*x^2 + 118466*y^2 + 207332*x*z - 86366*z^2
(-98039/193251 : 259600/193251 : 1) C1a (6096494/3423585 : -683513/3423585 : 1)
** u= 349/88 ; tau(u)= 173/261 ; -14441*x^2 + 106313*y^2 + 151730*x*z - 14441*z^2
(9127/95716 : 2995/95716 : 1) C1a (-2434570/1337847 : -317545/1337847 : 1)
** u= 353/56 ; tau(u)= 241/297 ; -51809*x^2 + 118337*y^2 + 182690*x*z - 51809*z^2
(11721/152783 : 86690/152783 : 1) C1a (63262874/3716745 : -1425443/743349 : 1)
** u= 353/152 ; tau(u)= 49/201 ; 43807*x^2 + 78401*y^2 + 127010*x*z + 43807*z^2
(-9887/18063 : 7238/18063 : 1) C1a (2288697/296159 : 282023/296159 : 1)
** u= 353/465 ; tau(u)= 577/112 ; 99521*x^2 - 307841*y^2 + 457538*x*z + 99521*z^2
(-64529/292007 : 30106/292007 : 1) C1b (27944430/3115997 : 3230357/3115997 : 1)
** u= 361/375 ; tau(u)= 389/14 ; 129929*x^2 - 150929*y^2 + 281642*x*z + 129929*z^2
(40363/233118 : -256405/233118 : 1) C1b (16715705/54018 : 2105207/54018 : 1)
** u= 362/83 ; tau(u)= 196/279 ; -24638*x^2 + 117266*y^2 + 169460*x*z - 24638*z^2
(-48053/910999 : 487970/910999 : 1) C1a (2783659/724163 : -306821/724163 : 1)
** u= 362/149 ; tau(u)= 64/213 ; 40306*x^2 + 86642*y^2 + 135140*x*z + 40306*z^2
(-63077/63853 : -50344/63853 : 1) C1a (61931137/192214 : 7126881/192214 : 1)
** u= 365/38 ; tau(u)= 289/327 ; -80633*x^2 + 130337*y^2 + 216746*x*z - 80633*z^2
(-2/19 : -17/19 : 1) C1a (-3147914/449021 : -396629/449021 : 1)
** u= 369/16 ; tau(u)= 337/353 ; -113057*x^2 + 135649*y^2 + 249730*x*z - 113057*z^2
(189637/451597 : -205632/451597 : 1) C1a (-142672017/5458646 : 18139567/5458646 : 1)
** u= 369/148 ; tau(u)= 73/221 ; 38479*x^2 + 92353*y^2 + 141490*x*z + 38479*z^2
(-1843471/3318494 : 1835253/3318494 : 1) C1a (33774661/12648258 : 4461449/12648258 : 1)
** u= 369/160 ; tau(u)= 49/209 ; 48799*x^2 + 84961*y^2 + 138562*x*z + 48799*z^2
(-19889/8290 : -1491/8290 : 1) C1a (-1521497/2226745 : 259891/2226745 : 1)
** u= 369/184 ; tau(u)= 1/185 ; 67711*x^2 + 68449*y^2 + 136162*x*z + 67711*z^2
(-117179/125947 : 9138/125947 : 1) C1a (9971573/2702547 : 1500397/2702547 : 1)
** u= 370/69 ; tau(u)= 232/301 ; -44302*x^2 + 127378*y^2 + 190724*x*z - 44302*z^2
(-13883/125951 : -90568/125951 : 1) C1a (127353395/5923906 : 14205639/5923906 : 1)
** u= 370/181 ; tau(u)= 8/189 ; 65458*x^2 + 71378*y^2 + 136964*x*z + 65458*z^2
(-1613/2085 : -284/2085 : 1) C1a (-10459/2926 : -1201/2926 : 1)
** u= 373/96 ; tau(u)= 181/277 ; -14329*x^2 + 120697*y^2 + 171890*x*z - 14329*z^2
(740749/83577161 : 27224332/83577161 : 1) C1a (1050095/1059694 : -156915/1059694 : 1)
** u= 373/387 ; tau(u)= 401/14 ; 138737*x^2 - 160409*y^2 + 299930*x*z + 138737*z^2
(-18296/27367 : 1035/27367 : 1) C1b (233673278/4096299 : 29656687/4096299 : 1)
** u= 373/441 ; tau(u)= 509/68 ; 129881*x^2 - 249833*y^2 + 398210*x*z + 129881*z^2
(709/7354 : -6057/7354 : 1) C1b (2027473/2101209 : 390769/2101209 : 1)
** u= 373/469 ; tau(u)= 565/96 ; 120697*x^2 - 300793*y^2 + 458354*x*z + 120697*z^2
(-1/5 : 52/155 : 1) C1b (-33235/35654 : -147441/1105274 : 1)
** u= 377/140 ; tau(u)= 97/237 ; 29791*x^2 + 102929*y^2 + 151538*x*z + 29791*z^2
(-77639/160113 : 95588/160113 : 1) C1a (-5376747/206210 : 35087/12130 : 1)
** u= 377/164 ; tau(u)= 49/213 ; 51391*x^2 + 88337*y^2 + 144530*x*z + 51391*z^2
(-221799/92621 : 952/92621 : 1) C1a (1002536839/7608417 : 118371799/7608417 : 1)
** u= 386/119 ; tau(u)= 148/267 ; 6418*x^2 + 120674*y^2 + 170900*x*z + 6418*z^2
(-1741/87 : -230/87 : 1) C1a (-1839221/121358 : -201431/121358 : 1)
** u= 386/143 ; tau(u)= 100/243 ; 30898*x^2 + 108098*y^2 + 158996*x*z + 30898*z^2
(-4889/20855 : 4338/20855 : 1) C1a (1049442/946913 : 172391/946913 : 1)
** u= 388/399 ; tau(u)= 410/11 ; 150302*x^2 - 167858*y^2 + 318644*x*z + 150302*z^2
(-1361/933 : -166/933 : 1) C1b (-359410/1673301 : -194921/1673301 : 1)
** u= 389/14 ; tau(u)= 361/375 ; -129929*x^2 + 150929*y^2 + 281642*x*z - 129929*z^2
(139877/410078 : 233605/410078 : 1) C1a (-13938450545/96306433 : -1758434013/96306433 : 1)
** u= 389/152 ; tau(u)= 85/237 ; 38983*x^2 + 105113*y^2 + 158546*x*z + 38983*z^2
(-166445/461722 : 163031/461722 : 1) C1a (-220237842/9471307 : -24658621/9471307 : 1)
** u= 392/485 ; tau(u)= 578/93 ; 136366*x^2 - 316786*y^2 + 487748*x*z + 136366*z^2
(25855/2571643 : 41888/62723 : 1) C1b (6615046/554731 : -775731/554731 : 1)
** u= 394/139 ; tau(u)= 116/255 ; 25186*x^2 + 116594*y^2 + 168692*x*z + 25186*z^2
(-14107/72105 : -17482/72105 : 1) C1a (14551/2070 : 1661/2070 : 1)
** u= 401/14 ; tau(u)= 373/387 ; -138737*x^2 + 160409*y^2 + 299930*x*z - 138737*z^2
(53771/4776 : -45169/4776 : 1) C1a (1001330/1523259 : -174055/1523259 : 1)
** u= 401/138 ; tau(u)= 125/263 ; 22463*x^2 + 122713*y^2 + 176426*x*z + 22463*z^2
(-3277/4642 : 3995/4642 : 1) C1a (119050/13499 : 549903/553459 : 1)
** u= 401/200 ; tau(u)= 1/201 ; 79999*x^2 + 80801*y^2 + 160802*x*z + 79999*z^2
(-453/437 : 290/3059 : 1) C1a (-3463/2050 : -67/350 : 1)
** u= 404/471 ; tau(u)= 538/67 ; 154238*x^2 - 280466*y^2 + 452660*x*z + 154238*z^2
(610091/885201 : -53378/38487 : 1) C1b (-3618569173/1136799781 : 30617739/87446137 : 1)
** u= 404/483 ; tau(u)= 562/79 ; 150734*x^2 - 303362*y^2 + 479060*x*z + 150734*z^2
(4533287/28976901 : -25196450/28976901 : 1) C1b (-4660446/5193995 : -133843/1038799 : 1)
** u= 409/112 ; tau(u)= 185/297 ; -9137*x^2 + 142193*y^2 + 201506*x*z - 9137*z^2
(-626753/6431 : -175944/6431 : 1) C1a (-936229218/449830055 : -115825189/449830055 : 1)
** u= 409/154 ; tau(u)= 101/255 ; 37231*x^2 + 119849*y^2 + 177482*x*z + 37231*z^2
(-1661/5448 : -1823/5448 : 1) C1a (1522974/1707341 : 281749/1707341 : 1)
** u= 409/168 ; tau(u)= 73/241 ; 51119*x^2 + 110833*y^2 + 172610*x*z + 51119*z^2
(-14579/14544 : 11603/14544 : 1) C1a (146239/71462 : -20769/71462 : 1)
** u= 410/11 ; tau(u)= 388/399 ; -150302*x^2 + 167858*y^2 + 318644*x*z - 150302*z^2
(37157/89465 : -45746/89465 : 1) C1a (44361/240665 : 28309/240665 : 1)
** u= 410/179 ; tau(u)= 52/231 ; 61378*x^2 + 104018*y^2 + 170804*x*z + 61378*z^2
(-29705/26791 : -19042/26791 : 1) C1a (1684039/448950 : -223229/448950 : 1)
** u= 421/160 ; tau(u)= 101/261 ; 40999*x^2 + 126041*y^2 + 187442*x*z + 40999*z^2
(-483493/1868338 : 363159/1868338 : 1) C1a (-47102815/31095706 : -5663303/31095706 : 1)
** u= 421/427 ; tau(u)= 433/6 ; 177169*x^2 - 187417*y^2 + 364730*x*z + 177169*z^2
(-341084/505177 : 126095/505177 : 1) C1b (-39722/2611 : -4947/2611 : 1)
** u= 433/6 ; tau(u)= 421/427 ; -177169*x^2 + 187417*y^2 + 364730*x*z - 177169*z^2
(232528/343059 : -84415/343059 : 1) C1a (7210166/4073785 : 162537/814757 : 1)
** u= 433/88 ; tau(u)= 257/345 ; -50561*x^2 + 172001*y^2 + 253538*x*z - 50561*z^2
(5905/461962 : -7817/14902 : 1) C1a (6996670/812119 : 769059/812119 : 1)
** u= 433/202 ; tau(u)= 29/231 ; 80767*x^2 + 105881*y^2 + 188330*x*z + 80767*z^2
(-71528/70833 : 35803/70833 : 1) C1a (-33577543/7939399 : 3807667/7939399 : 1)
** u= 433/477 ; tau(u)= 521/44 ; 183617*x^2 - 267569*y^2 + 458930*x*z + 183617*z^2
(-14621/90117 : -3460/5301 : 1) C1b (2255535/17087 : 272765/17087 : 1)
** u= 433/491 ; tau(u)= 549/58 ; 180761*x^2 - 294673*y^2 + 488890*x*z + 180761*z^2
(-162139/941554 : -553773/941554 : 1) C1b (-82453/257974 : 28463/257974 : 1)
** u= 441/76 ; tau(u)= 289/365 ; -71969*x^2 + 182929*y^2 + 278002*x*z - 71969*z^2
(-52489/260348 : -220269/260348 : 1) C1a (143400815/37197206 : 15719179/37197206 : 1)
** u= 441/160 ; tau(u)= 121/281 ; 36559*x^2 + 143281*y^2 + 209122*x*z + 36559*z^2
(-29605/94967 : 39732/94967 : 1) C1a (-225213/22702 : 24731/22702 : 1)
** u= 442/73 ; tau(u)= 296/369 ; -76958*x^2 + 184706*y^2 + 282980*x*z - 76958*z^2
(459/25369 : -688/1103 : 1) C1a (-1381506631/193975270 : -32961071/38795054 : 1)
** u= 442/141 ; tau(u)= 160/301 ; 14162*x^2 + 155602*y^2 + 220964*x*z + 14162*z^2
(-3449/12665 : 6808/12665 : 1) C1a (1055122/496835 : 131061/496835 : 1)
** u= 442/213 ; tau(u)= 16/229 ; 90482*x^2 + 104626*y^2 + 195620*x*z + 90482*z^2
(-35569/31141 : -11756/31141 : 1) C1a (-114360638/23646191 : 13283379/23646191 : 1)
** u= 445/94 ; tau(u)= 257/351 ; -48377*x^2 + 180353*y^2 + 264074*x*z - 48377*z^2
(26/137 : -59/14111 : 1) C1a (21310/1373 : 242111/141419 : 1)
** u= 445/186 ; tau(u)= 73/259 ; 63863*x^2 + 128833*y^2 + 203354*x*z + 63863*z^2
(-791565/728794 : -580253/728794 : 1) C1a (450805/1369766 : -181671/1369766 : 1)
** u= 445/208 ; tau(u)= 29/237 ; 85687*x^2 + 111497*y^2 + 198866*x*z + 85687*z^2
(-70829/50395 : 23648/50395 : 1) C1a (-3448810/161183 : -415857/161183 : 1)
** u= 449/140 ; tau(u)= 169/309 ; 10639*x^2 + 162401*y^2 + 230162*x*z + 10639*z^2
(-4109/2187 : -3364/2187 : 1) C1a (640035/422621 : -85823/422621 : 1)
** u= 449/182 ; tau(u)= 85/267 ; 59023*x^2 + 135353*y^2 + 208826*x*z + 59023*z^2
(-2341/6792 : -1423/6792 : 1) C1a (-15600958/1923823 : 1734599/1923823 : 1)
** u= 449/465 ; tau(u)= 481/16 ; 201089*x^2 - 230849*y^2 + 432962*x*z + 201089*z^2
(-1239/473 : -658/473 : 1) C1b (-20641570/7141821 : 2325149/7141821 : 1)
** u= 450/127 ; tau(u)= 196/323 ; -6158*x^2 + 170242*y^2 + 240916*x*z - 6158*z^2
(3439/148531 : 8694/148531 : 1) C1a (6213013/3364845 : -765443/3364845 : 1)
** u= 457/76 ; tau(u)= 305/381 ; -81473*x^2 + 197297*y^2 + 301874*x*z - 81473*z^2
(121556/505485 : -132673/505485 : 1) C1a (17175142/1219015 : -1922931/1219015 : 1)
** u= 457/184 ; tau(u)= 89/273 ; 59791*x^2 + 141137*y^2 + 216770*x*z + 59791*z^2
(-46601/89929 : 45722/89929 : 1) C1a (83166086/11207987 : -9917367/11207987 : 1)
** u= 458/93 ; tau(u)= 272/365 ; -56686*x^2 + 192466*y^2 + 283748*x*z - 56686*z^2
(-12979/2407 : -9868/2407 : 1) C1a (1166990/340969 : 128379/340969 : 1)
** u= 458/147 ; tau(u)= 164/311 ; 16322*x^2 + 166546*y^2 + 236660*x*z + 16322*z^2
(-53603/442841 : 119290/442841 : 1) C1a (-532994386/7217827 : -58440087/7217827 : 1)
** u= 477/218 ; tau(u)= 41/259 ; 93367*x^2 + 132481*y^2 + 229210*x*z + 93367*z^2
(-37418/60019 : 18975/60019 : 1) C1a (100816458/33016619 : 14309761/33016619 : 1)
** u= 477/224 ; tau(u)= 29/253 ; 99511*x^2 + 127177*y^2 + 228370*x*z + 99511*z^2
(-39431/24277 : 6420/24277 : 1) C1a (-1522273/1330569 : -187999/1330569 : 1)
** u= 481/16 ; tau(u)= 449/465 ; -201089*x^2 + 230849*y^2 + 432962*x*z - 201089*z^2
(36913/24948 : 197/3564 : 1) C1a (-2144531/7166370 : -1056541/7166370 : 1)
** u= 481/100 ; tau(u)= 281/381 ; -58961*x^2 + 211361*y^2 + 310322*x*z - 58961*z^2
(-351377/270723 : 441080/270723 : 1) C1a (-341244390/19587437 : 38539219/19587437 : 1)
** u= 481/106 ; tau(u)= 269/375 ; -49889*x^2 + 208889*y^2 + 303722*x*z - 49889*z^2
(18611/152894 : -5585/21842 : 1) C1a (114732421/396182619 : 43729369/396182619 : 1)
** u= 482/95 ; tau(u)= 292/387 ; -67214*x^2 + 214274*y^2 + 317588*x*z - 67214*z^2
(73003/752275 : -312718/752275 : 1) C1a (-1458823/3594465 : 465721/3594465 : 1)
** u= 482/119 ; tau(u)= 244/363 ; -31214*x^2 + 204002*y^2 + 291860*x*z - 31214*z^2
(-45627/185833 : -133166/185833 : 1) C1a (2080678/131099 : 228013/131099 : 1)
** u= 482/237 ; tau(u)= 8/245 ; 112274*x^2 + 119986*y^2 + 232388*x*z + 112274*z^2
(-1529/1953 : -164/1953 : 1) C1a (3456321610/167198639 : -453544179/167198639 : 1)
** u= 490/97 ; tau(u)= 296/393 ; -68798*x^2 + 221282*y^2 + 327716*x*z - 68798*z^2
(27117/161783 : -43232/161783 : 1) C1a (-49730/24416453 : 2736553/24416453 : 1)
** u= 490/181 ; tau(u)= 128/309 ; 49138*x^2 + 174578*y^2 + 256484*x*z + 49138*z^2
(-57623/150375 : 73696/150375 : 1) C1a (7387/793330 : -88683/793330 : 1)
** u= 493/88 ; tau(u)= 317/405 ; -85001*x^2 + 227561*y^2 + 343538*x*z - 85001*z^2
(66440/2296231 : -188487/328033 : 1) C1a (5358522/5916845 : 783913/5916845 : 1)
** u= 493/150 ; tau(u)= 193/343 ; 7751*x^2 + 198049*y^2 + 280298*x*z + 7751*z^2
(-913/10882 : 3065/10882 : 1) C1a (16492534/4388489 : 1881867/4388489 : 1)
344
>
u=-53/345のとき、(3a-),(3b-)は共通の有理点を持つので、対応する(1)の整点を追加した。
[参考文献]
- [1]Noam Elkies, "On A^4+B^4+C^4=D^4", Math Comp. 51(184), p824-835, 1988.
- [2]StarkExchange MATHEMATICS, "Distribution of Primitive Pytagorean Triples (PPT) and of solutions of A^4+B^4+C^4=D^4", 2016/07/08.
- [3]StarkExchange MATHEMATICS, "More elliptic curves fpr x^4+y^4+z^4=1?", 2017/07/28.
- [4]Tom Womack, "The quartic surfaces x^4+y^4+z^4=N", 2013/05/17.
- [5]Tom Womack, "elk18.mag", 2013/06/07.
- [6]Tom Womack, "elk18.pts", 2013/06/07.
- [7]Tom Womack, "Integer points on x^4+y^4+z^4=Nt^4", 2013/06/07.
- [8]StarkExchange MATHEMATICS, "a^4+b^4+c^4=2*d^2 such that a,b,c,d are all nonzero Integers & a+b+c!=0", 2024/04/26.
| Last Update: 2025.11.05 |
| H.Nakao |