Homeに戻る  一覧に戻る 

Integer Points on A^4+B^4+C^4=33784*D^4


[2026.02.17]A^4+B^4+C^4=341138*D^4の整点


■整点を求める方法は、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、詳細はそちらを参照すること。ただし、参照する数式のみ記載する。

自然数nを固定したとき、不定方程式
       A^4+B^4+C^4=2*n^2*D^4 ----------(1)
を満たす自明でない整数の組(A,B,C,D) (ただし C!=0かつgcd(A,B,C,D)=1)を探す。

以下では、Elkiesの論文(参考文献[1])の方法およびTom Womackの文書(参考文献[5])を参考にして、(1)を満たす整数の組(A,B,C,D)を探す。
ここで、整数A,B,C,Dは0以上として良い。


■x=A/C,y=B/C.t=D/Cとすると、
       x^4+y^4+1=2*n^2*t^4 ----------(2)
つまり、(2)を満たす有理数の組(x,y,t)を見つければ良い。

そのためには、nある有理数uに対して、
       ±(u^2-2)*y^2=(-u^2+4*u-2)*x^2-2*(u^2-2*u+2)*x+(-u^2+4*u-2) ----------(3a±)
       ±n*(u^2-2)*t^2=(u^2-2*u+2)*x^2+(-u^2+4*u-2)*x+(u^2-2*u+2) ----------(3b±)
の両方を満たす有理数の組(x,y,t)を見つければ良い。


■任意の有理数uについて、2次曲線(3b+)および(3b-)は、non-singularである。
また、u^2 > 2のとき、(3b+)のみ、u^2 < 2のとき、(3b-)のみが成立する。

■2次曲線(3a)がsingularであるのは、u=0,1,2のときであり。そのときに限る。
u=1のとき、(3a+)はsingularであるが、有理点を持たない。
u-0,2のとき、(3a+)はsingularであり、
       x^2 - x + 1=n*t^2 --------(**)
が有理点をもつかどうかを議論する必要がある。

341138=2*413^2であるので、以下では、n=413とする。

■n=413のとき、2次曲線(**)は、有理点を持たないつことが確認できる。

{MAGMAでの計算]
> P2 := ProjectiveSpace(Rationals(), 2);
> N:=413;
> C := Conic(P2,-N*y^2+x^2+x*z+z^2);
> HasRationalPoint(C);
false
>


■有理数u(u!=0,1,2)の高さが小さいものから、順に調べる。
例えば、有理数uの高さが200以下の範囲で、2つの2次曲線(3a+)と(3b±)が共に有理点を持つようなuを選択すると、以下のように104個のuが抽出される。
これらのuについて、(3a+),(3b±)を共に満たす有理数の組(x,y,t)を見つければ良い。

[MAGMAによる計算]
> PP(413,1,200);
** u= -1/49 ; tau(u)= 99/50 ; -4999*x^2 + 4801*y^2 + 9802*x*z - 4999*z^2
  (-353/543 : 910/543 : 1)  C2b (-102583/73912 : -7657/73912 : 1)
** u= 1/197 ; tau(u)= 393/196 ; -76831*x^2 + 77617*y^2 + 154450*x*z - 76831*z^2
  (48201/123271 : -74284/123271 : 1)  C1b (13659428/8410533 : -586981/8410533 : 1)
** u= 4/9 ; tau(u)= 14/5 ; -34*x^2 + 146*y^2 + 212*x*z - 34*z^2
  (1/22 : 9/22 : 1)  C1b (23419/5167 : -971/5167 : 1)
** u= -4/45 ; tau(u)= 94/49 ; -4786*x^2 + 4034*y^2 + 8852*x*z - 4786*z^2
  (395/1376 : -1113/1376 : 1)  C2b (-716687/69757 : 39001/69757 : 1)
** u= 4/65 ; tau(u)= 126/61 ; -7426*x^2 + 8434*y^2 + 15892*x*z - 7426*z^2
  (2063/5760 : -3251/5760 : 1)  C1b (59632/44399 : -91/1531 : 1)
** u= -4/117 ; tau(u)= 238/121 ; -29266*x^2 + 27362*y^2 + 56660*x*z - 29266*z^2
  (17717/15866 : 4785/15866 : 1)  C2b (-96426712/94915127 : -8342527/94915127 : 1)
** u= 5/13 ; tau(u)= 21/8 ; -103*x^2 + 313*y^2 + 466*x*z - 103*z^2
  (-5 : 4 : 1)  C1b (-110084/105087 : 7139/105087 : 1)
** u= -7/61 ; tau(u)= 129/68 ; -9199*x^2 + 7393*y^2 + 16690*x*z - 9199*z^2
  (-209/789 : -1096/789 : 1)  C2b (15005019/19887220 : -178579/3977444 : 1)
** u= -7/73 ; tau(u)= 153/80 ; -12751*x^2 + 10609*y^2 + 23458*x*z - 12751*z^2
  (45/67 : 3512/6901 : 1)  C2b (10316/4803 : -46343/494709 : 1)
** u= 7/81 ; tau(u)= 155/74 ; -10903*x^2 + 13073*y^2 + 24074*x*z - 10903*z^2
  (185/293 : -18/293 : 1)  C1b (-638424/561097 : -48311/561097 : 1)
** u= -8/41 ; tau(u)= 90/49 ; -4738*x^2 + 3298*y^2 + 8164*x*z - 4738*z^2
  (1123/1460 : -903/1460 : 1)  C2b (-1597/3279 : -241/3279 : 1)
** u= -8/101 ; tau(u)= 210/109 ; -23698*x^2 + 20338*y^2 + 44164*x*z - 23698*z^2
  (401/2841 : 2668/2841 : 1)  C2b (-747156/12367 : 38653/12367 : 1)
** u= 8/193 ; tau(u)= 378/185 ; -68386*x^2 + 74434*y^2 + 142948*x*z - 68386*z^2
  (78991/110195 : -13128/110195 : 1)  C1b (-2736236/964749 : 159511/964749 : 1)
** u= 12/13 ; tau(u)= 14 ; 142*x^2 + 194*y^2 + 340*x*z + 142*z^2
  (-144/119 : -67/119 : 1)  C1b (-1576/3799 : 159/3799 : 1)
** u= 12/181 ; tau(u)= 350/169 ; -56978*x^2 + 65378*y^2 + 122644*x*z - 56978*z^2
  (2050/4697 : 2197/4697 : 1)  C1b (-979816/2948173 : -167379/2948173 : 1)
** u= 14 ; tau(u)= 12/13 ; -142*x^2 - 194*y^2 + 340*x*z - 142*z^2
  (2/3 : -1/3 : 1)  C1a (6865/64 : -315/64 : 1)
** u= 14/5 ; tau(u)= 4/9 ; 34*x^2 - 146*y^2 + 212*x*z + 34*z^2
  (-1/22 : 9/22 : 1)  C1a (-363/248 : -17/248 : 1)
** u= -16/49 ; tau(u)= 114/65 ; -8194*x^2 + 4546*y^2 + 13252*x*z - 8194*z^2
  (285/691 : 658/691 : 1)  C2b (1028189/192713 : 54747/192713 : 1)
** u= -16/97 ; tau(u)= 210/113 ; -25282*x^2 + 18562*y^2 + 44356*x*z - 25282*z^2
  (-1115/271 : -1586/271 : 1)  C2b (5388/7661 : -343/7661 : 1)
** u= 17/49 ; tau(u)= 81/32 ; -1759*x^2 + 4513*y^2 + 6850*x*z - 1759*z^2
  (4099/21893 : -7560/21893 : 1)  C1b (951396/400289 : -39979/400289 : 1)
** u= -17/65 ; tau(u)= 147/82 ; -13159*x^2 + 8161*y^2 + 21898*x*z - 13159*z^2
  (-103/1389 : 1874/1389 : 1)  C2b (10688/137541 : -7489/137541 : 1)
** u= -19/49 ; tau(u)= 117/68 ; -8887*x^2 + 4441*y^2 + 14050*x*z - 8887*z^2
  (153/223 : 196/223 : 1)  C2b (5725/3908 : -275/3908 : 1)
** u= 21/8 ; tau(u)= 5/13 ; 103*x^2 - 313*y^2 + 466*x*z + 103*z^2
  (1/5 : -4/5 : 1)  C1a (-8307/9484 : 473/9484 : 1)
** u= 21/37 ; tau(u)= 53/16 ; -71*x^2 + 2297*y^2 + 3250*x*z - 71*z^2
  (9/431 : 16/431 : 1)  C1b (-70916/115421 : -5661/115421 : 1)
** u= 21/157 ; tau(u)= 293/136 ; -36551*x^2 + 48857*y^2 + 86290*x*z - 36551*z^2
  (78457/165587 : 46612/165587 : 1)  C1b (-15794812/10000633 : 1016571/10000633 : 1)
** u= -21/173 ; tau(u)= 367/194 ; -74831*x^2 + 59417*y^2 + 135130*x*z - 74831*z^2
  (1207339/1029219 : -586406/1029219 : 1)  C2b (-5313472/2938045 : 77229/587609 : 1)
** u= 24/89 ; tau(u)= 154/65 ; -7874*x^2 + 15266*y^2 + 24292*x*z - 7874*z^2
  (91/326 : -109/326 : 1)  C1b (-2098724/552437 : -102573/552437 : 1)
** u= -25/49 ; tau(u)= 123/74 ; -10327*x^2 + 4177*y^2 + 15754*x*z - 10327*z^2
  (4143/1483 : -4970/1483 : 1)  C2b (87224/44477 : 4533/44477 : 1)
** u= 28/89 ; tau(u)= 150/61 ; -6658*x^2 + 15058*y^2 + 23284*x*z - 6658*z^2
  (-5608/26373 : -23455/26373 : 1)  C1b (-7363/22536 : -1109/22536 : 1)
** u= -28/117 ; tau(u)= 262/145 ; -41266*x^2 + 26594*y^2 + 69428*x*z - 41266*z^2
  (-187171/12020 : -245883/12020 : 1)  C2b (-17586992/802471 : -1016191/802471 : 1)
** u= 28/173 ; tau(u)= 318/145 ; -41266*x^2 + 59074*y^2 + 101908*x*z - 41266*z^2
  (42387/95936 : 25871/95936 : 1)  C1b (-7503397/3773439 : 441827/3773439 : 1)
** u= 29/49 ; tau(u)= 69/20 ; 41*x^2 + 3961*y^2 + 5602*x*z + 41*z^2
  (-95/12687 : 196/12687 : 1)  C1b (149172/18791 : 6227/18791 : 1)
** u= 29/109 ; tau(u)= 189/80 ; -11959*x^2 + 22921*y^2 + 36562*x*z - 11959*z^2
  (-643/17539 : -13368/17539 : 1)  C1b (-160208899/79137876 : -8813519/79137876 : 1)
** u= -32/117 ; tau(u)= 266/149 ; -43378*x^2 + 26354*y^2 + 71780*x*z - 43378*z^2
  (4453/4972 : 3609/4972 : 1)  C2b (18012/22523 : -1061/22523 : 1)
** u= 35/157 ; tau(u)= 279/122 ; -28543*x^2 + 48073*y^2 + 79066*x*z - 28543*z^2
  (62297/151873 : 20934/151873 : 1)  C1b (390256/4924343 : -214067/4924343 : 1)
** u= -43/153 ; tau(u)= 349/196 ; -74983*x^2 + 44969*y^2 + 123650*x*z - 74983*z^2
  (-46909/149 : -60732/149 : 1)  C2b (5370381/603271 : -290069/603271 : 1)
** u= 44/85 ; tau(u)= 126/41 ; -1426*x^2 + 12514*y^2 + 17812*x*z - 1426*z^2
  (-471/8572 : 3761/8572 : 1)  C1b (335056/86417 : -14083/86417 : 1)
** u= 47/145 ; tau(u)= 243/98 ; -16999*x^2 + 39841*y^2 + 61258*x*z - 16999*z^2
  (-62651/854813 : 629118/854813 : 1)  C1b (-555355264/189976209 : 251297/1742901 : 1)
** u= -52/37 ; tau(u)= 126/89 ; -13138*x^2 + 34*y^2 + 18580*x*z - 13138*z^2
  (-1/2 : 55/2 : 1)  C2b (238080/23981 : 180385/23981 : 1)
** u= -52/49 ; tau(u)= 150/101 ; -17698*x^2 + 2098*y^2 + 25204*x*z - 17698*z^2
  (-3377/124912 : 369845/124912 : 1)  C2b (-2053864/260591 : 270687/260591 : 1)
** u= 53/16 ; tau(u)= 21/37 ; 71*x^2 - 2297*y^2 + 3250*x*z + 71*z^2
  (-43/4101 : -520/4101 : 1)  C1a (-417791/3229 : 17289/3229 : 1)
** u= -56/53 ; tau(u)= 162/109 ; -20626*x^2 + 2482*y^2 + 29380*x*z - 20626*z^2
  (79/14 : -201/14 : 1)  C2b (-5492/12945 : 413/2589 : 1)
** u= 56/61 ; tau(u)= 66/5 ; 3086*x^2 + 4306*y^2 + 7492*x*z + 3086*z^2
  (-87/128 : -47/128 : 1)  C1b (-7292/4889 : 317/4889 : 1)
** u= 56/73 ; tau(u)= 90/17 ; 2558*x^2 + 7522*y^2 + 11236*x*z + 2558*z^2
  (-209/863 : -36/863 : 1)  C1b (-259033/36427 : -10769/36427 : 1)
** u= 56/97 ; tau(u)= 138/41 ; -226*x^2 + 15682*y^2 + 22180*x*z - 226*z^2
  (114/11737 : -305/11737 : 1)  C1b (304748/888043 : -38729/888043 : 1)
** u= 56/109 ; tau(u)= 162/53 ; -2482*x^2 + 20626*y^2 + 29380*x*z - 2482*z^2
  (53/8302 : -2769/8302 : 1)  C1b (1605364/3183111 : -142927/3183111 : 1)
** u= 56/153 ; tau(u)= 250/97 ; -15682*x^2 + 43682*y^2 + 65636*x*z - 15682*z^2
  (9487/703 : 4740/703 : 1)  C1b (252740541/50579156 : -10475807/50579156 : 1)
** u= 56/181 ; tau(u)= 306/125 ; -28114*x^2 + 62386*y^2 + 96772*x*z - 28114*z^2
  (1309/4936 : -1315/4936 : 1)  C1b (-150813/285652 : 15587/285652 : 1)
** u= -60/49 ; tau(u)= 158/109 ; -20162*x^2 + 1202*y^2 + 28564*x*z - 20162*z^2
  (24/815 : -3269/815 : 1)  C2b (115957/53168 : 14757/53168 : 1)
** u= -61/85 ; tau(u)= 231/146 ; -38911*x^2 + 10729*y^2 + 57082*x*z - 38911*z^2
  (30037/59109 : 80606/59109 : 1)  C2b (-100283032/10580081 : 8649519/10580081 : 1)
** u= 64/81 ; tau(u)= 98/17 ; 3518*x^2 + 9026*y^2 + 13700*x*z + 3518*z^2
  (-121/131 : 108/131 : 1)  C1b (-91468/367383 : -15221/367383 : 1)
** u= 66/5 ; tau(u)= 56/61 ; -3086*x^2 - 4306*y^2 + 7492*x*z - 3086*z^2
  (3501/2107 : -932/2107 : 1)  C1a (2004/53 : -91/53 : 1)
** u= 68/181 ; tau(u)= 294/113 ; -20914*x^2 + 60898*y^2 + 91060*x*z - 20914*z^2
  (67687/836328 : 396403/836328 : 1)  C1b (769499/76151 : 32151/76151 : 1)
** u= 69/20 ; tau(u)= 29/49 ; -41*x^2 - 3961*y^2 + 5602*x*z - 41*z^2
  (107/2203 : 532/2203 : 1)  C1a (50369/4453 : -2091/4453 : 1)
** u= -71/125 ; tau(u)= 321/196 ; -71791*x^2 + 26209*y^2 + 108082*x*z - 71791*z^2
  (47121/1625711 : -2632420/1625711 : 1)  C2b (-19130764/96380343 : 7773859/96380343 : 1)
** u= 77/117 ; tau(u)= 157/40 ; 2729*x^2 + 21449*y^2 + 30578*x*z + 2729*z^2
  (-1841/14005 : 3372/14005 : 1)  C1b (275817/102244 : -12571/102244 : 1)
** u= 80/117 ; tau(u)= 154/37 ; 3662*x^2 + 20978*y^2 + 30116*x*z + 3662*z^2
  (-2803/10199 : -4638/10199 : 1)  C1b (-17453431/4079708 : 726821/4079708 : 1)
** u= 81/32 ; tau(u)= 17/49 ; 1759*x^2 - 4513*y^2 + 6850*x*z + 1759*z^2
  (-503/97 : -168/97 : 1)  C1a (-91468/367383 : -15221/367383 : 1)
** u= -83/113 ; tau(u)= 309/196 ; -69943*x^2 + 18649*y^2 + 102370*x*z - 69943*z^2
  (10511/53693 : 90160/53693 : 1)  C2b (-4459489/34829 : 12603/1201 : 1)
** u= 84/97 ; tau(u)= 110/13 ; 6718*x^2 + 11762*y^2 + 19156*x*z + 6718*z^2
  (-3779/9222 : -163/9222 : 1)  C1b (-2368/7711 : 321/7711 : 1)
** u= 90/17 ; tau(u)= 56/73 ; -2558*x^2 - 7522*y^2 + 11236*x*z - 2558*z^2
  (209/863 : -36/863 : 1)  C1a (6905509/2398687 : 288101/2398687 : 1)
** u= 90/49 ; tau(u)= -8/41 ; 4738*x^2 - 3298*y^2 + 8164*x*z + 4738*z^2
  (-1613/1789 : 1092/1789 : 1)  C1a (-61548/41323 : 2761/41323 : 1)
** u= 94/49 ; tau(u)= -4/45 ; 4786*x^2 - 4034*y^2 + 8852*x*z + 4786*z^2
  (-863/1202 : -567/1202 : 1)  C1a (-171265648/1035241 : 8798669/1035241 : 1)
** u= 98/17 ; tau(u)= 64/81 ; -3518*x^2 - 9026*y^2 + 13700*x*z - 3518*z^2
  (1363/2147 : 1386/2147 : 1)  C1a (951396/400289 : -39979/400289 : 1)
** u= 99/50 ; tau(u)= -1/49 ; 4999*x^2 - 4801*y^2 + 9802*x*z + 4999*z^2
  (-4759/5571 : -1330/5571 : 1)  C1a (427311/507947 : -40451/507947 : 1)
** u= -100/97 ; tau(u)= 294/197 ; -67618*x^2 + 8818*y^2 + 96436*x*z - 67618*z^2
  (208511/679166 : 1523725/679166 : 1)  C2b (5917033/605632 : -633933/605632 : 1)
** u= -109/117 ; tau(u)= 343/226 ; -90271*x^2 + 15497*y^2 + 129530*x*z - 90271*z^2
  (-104353/482759 : -1357230/482759 : 1)  C2b (15192/125297 : 11591/125297 : 1)
** u= 110/13 ; tau(u)= 84/97 ; -6718*x^2 - 11762*y^2 + 19156*x*z - 6718*z^2
  (405/914 : 179/914 : 1)  C1a (-1957096/700733 : 102063/700733 : 1)
** u= 114/65 ; tau(u)= -16/49 ; 8194*x^2 - 4546*y^2 + 13252*x*z + 8194*z^2
  (29/153 : -14/9 : 1)  C1a (-95996/39607 : -4633/39607 : 1)
** u= 115/117 ; tau(u)= 119/2 ; 13217*x^2 + 14153*y^2 + 27386*x*z + 13217*z^2
  (-27653/21163 : -174/21163 : 1)  C1b (10959/10613 : 899/10613 : 1)
** u= 116/121 ; tau(u)= 126/5 ; 13406*x^2 + 15826*y^2 + 29332*x*z + 13406*z^2
  (-2603/3656 : 759/3656 : 1)  C1b (-31344/20917 : -1357/20917 : 1)
** u= 117/68 ; tau(u)= -19/49 ; 8887*x^2 - 4441*y^2 + 14050*x*z + 8887*z^2
  (-3097/1263 : -3164/1263 : 1)  C1a (44097/47972 : -5149/47972 : 1)
** u= 119/2 ; tau(u)= 115/117 ; -13217*x^2 - 14153*y^2 + 27386*x*z - 13217*z^2
  (5407/4181 : -342/4181 : 1)  C1a (3140423/1013016 : 135329/1013016 : 1)
** u= 123/74 ; tau(u)= -25/49 ; 10327*x^2 - 4177*y^2 + 15754*x*z + 10327*z^2
  (7153/104007 : -172270/104007 : 1)  C1a (29879/67072 : 6051/67072 : 1)
** u= 126/5 ; tau(u)= 116/121 ; -13406*x^2 - 15826*y^2 + 29332*x*z - 13406*z^2
  (393/256 : 11/256 : 1)  C1a (40953/217072 : 9553/217072 : 1)
** u= 126/41 ; tau(u)= 44/85 ; 1426*x^2 - 12514*y^2 + 17812*x*z + 1426*z^2
  (240/1657 : -941/1657 : 1)  C1a (1228296/303881 : -53497/303881 : 1)
** u= 126/61 ; tau(u)= 4/65 ; 7426*x^2 - 8434*y^2 + 15892*x*z + 7426*z^2
  (929727/75116 : -947441/75116 : 1)  C1a (2431/8917 : 491/8917 : 1)
** u= 126/89 ; tau(u)= -52/37 ; 13138*x^2 - 34*y^2 + 18580*x*z + 13138*z^2
  (-211/1076 : 18453/1076 : 1)  C1a (-1347/4072 : 2653/4072 : 1)
** u= 129/68 ; tau(u)= -7/61 ; 9199*x^2 - 7393*y^2 + 16690*x*z + 9199*z^2
  (-23459/19257 : -11240/19257 : 1)  C1a (1011748/36385 : 10793/7277 : 1)
** u= -131/197 ; tau(u)= 525/328 ; -198007*x^2 + 60457*y^2 + 292786*x*z - 198007*z^2
  (-639053/2860753 : 6082340/2860753 : 1)  C2b (6237676/7395403 : 427743/7395403 : 1)
** u= 133/149 ; tau(u)= 165/16 ; 17177*x^2 + 26713*y^2 + 44914*x*z + 17177*z^2
  (-7623/3959 : 1816/3959 : 1)  C1b (5583027/853481 : 268979/853481 : 1)
** u= 136/173 ; tau(u)= 210/37 ; 15758*x^2 + 41362*y^2 + 62596*x*z + 15758*z^2
  (-71/205 : 64/205 : 1)  C1b (17705917/500961 : 763561/500961 : 1)
** u= 138/41 ; tau(u)= 56/97 ; 226*x^2 - 15682*y^2 + 22180*x*z + 226*z^2
  (6472/29591 : 16855/29591 : 1)  C1a (782781/221156 : -33749/221156 : 1)
** u= -140/197 ; tau(u)= 534/337 ; -207538*x^2 + 58018*y^2 + 304756*x*z - 207538*z^2
  (692/269 : 997/269 : 1)  C2b (2224913/1382144 : -130359/1382144 : 1)
** u= -143/149 ; tau(u)= 441/292 ; -150079*x^2 + 23953*y^2 + 214930*x*z - 150079*z^2
  (-351/1499 : 4424/1499 : 1)  C2b (-78860/32799 : 10885/32799 : 1)
** u= 147/82 ; tau(u)= -17/65 ; 13159*x^2 - 8161*y^2 + 21898*x*z + 13159*z^2
  (-10103/8111 : -7126/8111 : 1)  C1a (-383669/54687 : 20149/54687 : 1)
** u= 150/61 ; tau(u)= 28/89 ; 6658*x^2 - 15058*y^2 + 23284*x*z + 6658*z^2
  (-523/2136 : -641/2136 : 1)  C1a (154529/44003 : -7457/44003 : 1)
** u= 150/101 ; tau(u)= -52/49 ; 17698*x^2 - 2098*y^2 + 25204*x*z + 17698*z^2
  (-207/32 : -539/32 : 1)  C1a (-1137592/66937 : -131649/66937 : 1)
** u= -151/145 ; tau(u)= 441/296 ; -152431*x^2 + 19249*y^2 + 217282*x*z - 152431*z^2
  (15733/101615 : 256284/101615 : 1)  C2b (-4249001/1077557 : -45533/82889 : 1)
** u= 153/80 ; tau(u)= -7/73 ; 12751*x^2 - 10609*y^2 + 23458*x*z + 12751*z^2
  (-45/67 : -3512/6901 : 1)  C1a (70668/97271 : -789151/10018913 : 1)
** u= 154/37 ; tau(u)= 80/117 ; -3662*x^2 - 20978*y^2 + 30116*x*z - 3662*z^2
  (1703/13168 : 1191/13168 : 1)  C1a (500357/341052 : 23773/341052 : 1)
** u= 154/65 ; tau(u)= 24/89 ; 7874*x^2 - 15266*y^2 + 24292*x*z + 7874*z^2
  (-610/2699 : -1153/2699 : 1)  C1a (2587156/214033 : -116937/214033 : 1)
** u= 155/74 ; tau(u)= 7/81 ; 10903*x^2 - 13073*y^2 + 24074*x*z + 10903*z^2
  (3841/60059 : 58698/60059 : 1)  C1a (-2241/3512 : -151/3512 : 1)
** u= 157/40 ; tau(u)= 77/117 ; -2729*x^2 - 21449*y^2 + 30578*x*z - 2729*z^2
  (18515/11623 : 15684/11623 : 1)  C1a (-22823908/12021411 : -1110421/12021411 : 1)
** u= 158/109 ; tau(u)= -60/49 ; 20162*x^2 - 1202*y^2 + 28564*x*z + 20162*z^2
  (219/964 : -4627/964 : 1)  C1a (-17984/9931 : -2211/9931 : 1)
** u= 162/53 ; tau(u)= 56/109 ; 2482*x^2 - 20626*y^2 + 29380*x*z + 2482*z^2
  (-13957/169373 : -10404/169373 : 1)  C1a (1866545/76619 : 77845/76619 : 1)
** u= 162/109 ; tau(u)= -56/53 ; 20626*x^2 - 2482*y^2 + 29380*x*z + 20626*z^2
  (-2087/1171 : -4320/1171 : 1)  C1a (-717439/130196 : 75761/130196 : 1)
** u= 165/16 ; tau(u)= 133/149 ; -17177*x^2 - 26713*y^2 + 44914*x*z - 17177*z^2
  (11987/10795 : -7088/10795 : 1)  C1a (-180181/279487 : -17421/279487 : 1)
** u= -165/173 ; tau(u)= 511/338 ; -201263*x^2 + 32633*y^2 + 288346*x*z - 201263*z^2
  (15/11 : -26/11 : 1)  C2b (-56395391/16865003 : -7160181/16865003 : 1)
** u= -168/121 ; tau(u)= 410/289 ; -138818*x^2 + 1058*y^2 + 196324*x*z - 138818*z^2
  (3/14 : -3179/322 : 1)  C2b (-332764/39241 : 3941691/902543 : 1)
** u= -175/181 ; tau(u)= 537/356 ; -222847*x^2 + 34897*y^2 + 318994*x*z - 222847*z^2
  (549/551 : 1048/551 : 1)  C2b (8954324/21039821 : 1695051/21039821 : 1)
** u= -187/169 ; tau(u)= 525/356 ; -218503*x^2 + 22153*y^2 + 310594*x*z - 218503*z^2
  (36403/54837 : -121420/54837 : 1)  C2b (-35909484/11882587 : -5871521/11882587 : 1)
** u= 189/80 ; tau(u)= 29/109 ; 11959*x^2 - 22921*y^2 + 36562*x*z + 11959*z^2
  (643/17539 : -13368/17539 : 1)  C1a (721988/489459 : -43769/489459 : 1)
** u= -199/193 ; tau(u)= 585/392 ; -267727*x^2 + 34897*y^2 + 381826*x*z - 267727*z^2
  (729/1427 : 2884/1427 : 1)  C2b (1985709/3266588 : 270341/3266588 : 1)
104
>

ここからは、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、最終的に得られた(1)の整点のみを記述する。
ここで、対応する整点が見つかった各有理数uについて、0 <= A <= B <=C を満たすように、A,B,Cを交換して、Dの小さい順に(1)の等式を並べ替えると、以下のようになる。



[2026.02.18追記] u=28/89,-56/53,56/97のときの整点を追加した。


[参考文献]


Last Update: 2026.02.18
H.Nakao

Homeに戻る[Homeに戻る]  一覧に戻る[一覧に戻る]