Integer Points on A^4+B^4+C^4=132098*D^4
[2026.01.29]A^4+B^4+C^4=132098*D^4の整点
■整点を求める方法は、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、詳細はそちらを参照すること。ただし、参照する数式のみ記載する。
自然数nを固定したとき、不定方程式
A^4+B^4+C^4=2*n^2*D^4 ----------(1)
を満たす自明でない整数の組(A,B,C,D) (ただし C!=0かつgcd(A,B,C,D)=1)を探す。
以下では、Elkiesの論文(参考文献[1])の方法およびTom Womackの文書(参考文献[5])を参考にして、(1)を満たす整数の組(A,B,C,D)を探す。
ここで、整数A,B,C,Dは0以上として良い。
■x=A/C,y=B/C.t=D/Cとすると、
x^4+y^4+1=2*n^2*t^4 ----------(2)
つまり、(2)を満たす有理数の組(x,y,t)を見つければ良い。
そのためには、nある有理数uに対して、
±(u^2-2)*y^2=(-u^2+4*u-2)*x^2-2*(u^2-2*u+2)*x+(-u^2+4*u-2) ----------(3a±)
±n*(u^2-2)*t^2=(u^2-2*u+2)*x^2+(-u^2+4*u-2)*x+(u^2-2*u+2) ----------(3b±)
の両方を満たす有理数の組(x,y,t)を見つければ良い。
■任意の有理数uについて、2次曲線(3b+)および(3b-)は、non-singularである。
また、u^2 > 2のとき、(3b+)のみ、u^2 < 2のとき、(3b-)のみが成立する。
■2次曲線(3a)がsingularであるのは、u=0,1,2のときであり。そのときに限る。
u=1のとき、(3a+)はsingularであるが、有理点を持たない。
u-0,2のとき、(3a+)はsingularであり、
x^2 - x + 1=n*t^2 --------(**)
が有理点をもつかどうかを議論する必要がある。
132098=2*257^2であるので、以下では、n=257とする。
■n=257のとき、2次曲線(**)は、有理点を持たないことが確認できる。
{MAGMAでの計算]
> P2 := ProjectiveSpace(Rationals(), 2);
> N:=257;
> C := Conic(P2,-N*y^2+x^2+x*z+z^2);
> HasRationalPoint(C);
false
>
■有理数u(u!=0,1,2)の高さが小さいものから、順に調べる。
例えば、有理数uの高さが200以下の範囲で、2つの2次曲線(3a+)と(3b±)が共に有理点を持つようなuを選択すると、以下のように182個のuが抽出される。
これらのuについて、(3a+),(3b±)を共に満たす有理数の組(x,y,t)を見つければ良い。
[MAGMAによる計算]
> PP(257,1,200);
** u= -1/49 ; tau(u)= 99/50 ; -4999*x^2 + 4801*y^2 + 9802*x*z - 4999*z^2
(-353/543 : 910/543 : 1) C2b (-60891/295484 : 20843/295484 : 1)
** u= 1/53 ; tau(u)= 105/52 ; -5407*x^2 + 5617*y^2 + 11026*x*z - 5407*z^2
(-523/244295 : -240208/244295 : 1) C1b (-59204936/4087967 : -3789041/4087967 : 1)
** u= 1/137 ; tau(u)= 273/136 ; -36991*x^2 + 37537*y^2 + 74530*x*z - 36991*z^2
(40591/47221 : -3916/47221 : 1) C1b (4879544/711119 : -283941/711119 : 1)
** u= 4/5 ; tau(u)= 6 ; 14*x^2 + 34*y^2 + 52*x*z + 14*z^2
(-1/2 : -1/2 : 1) C1b (-19/4 : -1/4 : 1)
** u= 4/9 ; tau(u)= 14/5 ; -34*x^2 + 146*y^2 + 212*x*z - 34*z^2
(1/22 : 9/22 : 1) C1b (-5068/4581 : 391/4581 : 1)
** u= 4/29 ; tau(u)= 54/25 ; -1234*x^2 + 1666*y^2 + 2932*x*z - 1234*z^2
(2 : -3/7 : 1) C1b (-3371/3917 : 2519/27419 : 1)
** u= 4/53 ; tau(u)= 102/49 ; -4786*x^2 + 5602*y^2 + 10420*x*z - 4786*z^2
(-4507/888 : -5047/888 : 1) C1b (389113/6932 : 23219/6932 : 1)
** u= 5/13 ; tau(u)= 21/8 ; -103*x^2 + 313*y^2 + 466*x*z - 103*z^2
(-5 : 4 : 1) C1b (28328/15799 : -1573/15799 : 1)
** u= -5/29 ; tau(u)= 63/34 ; -2287*x^2 + 1657*y^2 + 3994*x*z - 2287*z^2
(177/181 : -106/181 : 1) C2b (-258761/154433 : -25307/154433 : 1)
** u= 5/169 ; tau(u)= 333/164 ; -53767*x^2 + 57097*y^2 + 110914*x*z - 53767*z^2
(182033/581575 : 379548/581575 : 1) C1b (-3478581/623597 : 234839/623597 : 1)
** u= -5/173 ; tau(u)= 351/178 ; -63343*x^2 + 59833*y^2 + 123226*x*z - 63343*z^2
(16243/11791 : 5662/11791 : 1) C2b (45355564/1835447 : -2813021/1835447 : 1)
** u= 6 ; tau(u)= 4/5 ; -14*x^2 - 34*y^2 + 52*x*z - 14*z^2
(1/2 : -1/2 : 1) C1a (-964/27 : 53/27 : 1)
** u= -7/45 ; tau(u)= 97/52 ; -5359*x^2 + 4001*y^2 + 9458*x*z - 5359*z^2
(4051/74305 : -81888/74305 : 1) C2b (-259968/98813 : 22127/98813 : 1)
** u= 7/89 ; tau(u)= 171/82 ; -13399*x^2 + 15793*y^2 + 29290*x*z - 13399*z^2
(17377/26853 : 1598/26853 : 1) C1b (-704492/853665 : 16007/170733 : 1)
** u= 7/153 ; tau(u)= 299/146 ; -42583*x^2 + 46769*y^2 + 89450*x*z - 42583*z^2
(-15341/404539 : 401358/404539 : 1) C1b (7484367/11128988 : 611723/11128988 : 1)
** u= -8/9 ; tau(u)= 26/17 ; -514*x^2 + 98*y^2 + 740*x*z - 514*z^2
(-1/2 : -45/14 : 1) C2b (111/280 : 37/392 : 1)
** u= 8/25 ; tau(u)= 42/17 ; -514*x^2 + 1186*y^2 + 1828*x*z - 514*z^2
(-151/14 : 115/14 : 1) C1b (33168/17459 : -1799/17459 : 1)
** u= -8/29 ; tau(u)= 66/37 ; -2674*x^2 + 1618*y^2 + 4420*x*z - 2674*z^2
(19/27 : 20/27 : 1) C2b (171752/9927 : 12097/9927 : 1)
** u= -8/101 ; tau(u)= 210/109 ; -23698*x^2 + 20338*y^2 + 44164*x*z - 23698*z^2
(401/2841 : 2668/2841 : 1) C2b (1588493/777581 : 87261/777581 : 1)
** u= 8/109 ; tau(u)= 210/101 ; -20338*x^2 + 23698*y^2 + 44164*x*z - 20338*z^2
(2476/6541 : 58391/111197 : 1) C1b (1045984/531179 : -951767/9030043 : 1)
** u= 11/45 ; tau(u)= 79/34 ; -2191*x^2 + 3929*y^2 + 6362*x*z - 2191*z^2
(1205/401 : 342/401 : 1) C1b (37532/63443 : 3457/63443 : 1)
** u= -12/41 ; tau(u)= 94/53 ; -5474*x^2 + 3218*y^2 + 8980*x*z - 5474*z^2
(276/1717 : -115/101 : 1) C2b (189836/81769 : 11367/81769 : 1)
** u= 13/17 ; tau(u)= 21/4 ; 137*x^2 + 409*y^2 + 610*x*z + 137*z^2
(-397/1673 : 16/1673 : 1) C1b (10304/7465 : 151/1493 : 1)
** u= 13/45 ; tau(u)= 77/32 ; -1879*x^2 + 3881*y^2 + 6098*x*z - 1879*z^2
(24137/70751 : -4728/70751 : 1) C1b (-10704/36793 : -2287/36793 : 1)
** u= -13/109 ; tau(u)= 231/122 ; -29599*x^2 + 23593*y^2 + 53530*x*z - 29599*z^2
(12953/20513 : -11642/20513 : 1) C2b (3747692/139863 : 243979/139863 : 1)
** u= -13/157 ; tau(u)= 327/170 ; -57631*x^2 + 49129*y^2 + 107098*x*z - 57631*z^2
(5549/8957 : 4678/8957 : 1) C2b (600349/2827283 : 166381/2827283 : 1)
** u= 14/5 ; tau(u)= 4/9 ; 34*x^2 - 146*y^2 + 212*x*z + 34*z^2
(-1/22 : 9/22 : 1) C1a (354869/197916 : 23023/197916 : 1)
** u= 15/113 ; tau(u)= 211/98 ; -18983*x^2 + 25313*y^2 + 44746*x*z - 18983*z^2
(78759773/1076725509 : 850981054/1076725509 : 1) C1b (-1998908/1679219 : -182301/1679219 : 1)
** u= -15/193 ; tau(u)= 401/208 ; -86303*x^2 + 74273*y^2 + 161026*x*z - 86303*z^2
(-747/251 : 18056/4267 : 1) C2b (-16/643 : 184923/2809267 : 1)
** u= -16/13 ; tau(u)= 42/29 ; -1426*x^2 + 82*y^2 + 2020*x*z - 1426*z^2
(59/6 : -229/6 : 1) C2b (-1672/905 : 105/181 : 1)
** u= -16/37 ; tau(u)= 90/53 ; -5362*x^2 + 2482*y^2 + 8356*x*z - 5362*z^2
(-7/3 : 14/3 : 1) C2b (3976/2427 : 247/2427 : 1)
** u= 17/49 ; tau(u)= 81/32 ; -1759*x^2 + 4513*y^2 + 6850*x*z - 1759*z^2
(4099/21893 : -7560/21893 : 1) C1b (838200/375521 : -44875/375521 : 1)
** u= -17/81 ; tau(u)= 179/98 ; -18919*x^2 + 12833*y^2 + 32330*x*z - 18919*z^2
(-18059/2029 : 24066/2029 : 1) C2b (234932364/19231369 : -15697639/19231369 : 1)
** u= -20/17 ; tau(u)= 54/37 ; -2338*x^2 + 178*y^2 + 3316*x*z - 2338*z^2
(-5/96 : 361/96 : 1) C2b (8692/1331 : 1487/1331 : 1)
** u= 20/193 ; tau(u)= 366/173 ; -59458*x^2 + 74098*y^2 + 134356*x*z - 59458*z^2
(7598/20771 : 10313/20771 : 1) C1b (8087612/6498251 : -464343/6498251 : 1)
** u= 21/4 ; tau(u)= 13/17 ; -137*x^2 - 409*y^2 + 610*x*z - 137*z^2
(27/19 : 20/19 : 1) C1a (-28721/21719 : 2139/21719 : 1)
** u= 21/8 ; tau(u)= 5/13 ; 103*x^2 - 313*y^2 + 466*x*z + 103*z^2
(1/5 : -4/5 : 1) C1a (1129/664 : 77/664 : 1)
** u= 21/25 ; tau(u)= 29/4 ; 409*x^2 + 809*y^2 + 1282*x*z + 409*z^2
(-581/1329 : 400/1329 : 1) C1b (16281184/383927 : 911037/383927 : 1)
** u= 21/157 ; tau(u)= 293/136 ; -36551*x^2 + 48857*y^2 + 86290*x*z - 36551*z^2
(78457/165587 : 46612/165587 : 1) C1b (-719089664/704195 : -8433903/140839 : 1)
** u= -23/41 ; tau(u)= 105/64 ; -7663*x^2 + 2833*y^2 + 11554*x*z - 7663*z^2
(9657/8327 : -10576/8327 : 1) C2b (138533/62011 : 9611/62011 : 1)
** u= 23/49 ; tau(u)= 75/26 ; -823*x^2 + 4273*y^2 + 6154*x*z - 823*z^2
(4943/44507 : -8330/44507 : 1) C1b (82443732/6763081 : 4330717/6763081 : 1)
** u= 23/169 ; tau(u)= 315/146 ; -42103*x^2 + 56593*y^2 + 99754*x*z - 42103*z^2
(2615/1183 : -822/1183 : 1) C1b (5513963/6755428 : 391067/6755428 : 1)
** u= -24/61 ; tau(u)= 146/85 ; -13874*x^2 + 6866*y^2 + 21892*x*z - 13874*z^2
(-17/59 : -104/59 : 1) C2b (3798491/322243 : 283767/322243 : 1)
** u= -25/169 ; tau(u)= 363/194 ; -74647*x^2 + 56497*y^2 + 132394*x*z - 74647*z^2
(-29/3351 : -27170/23457 : 1) C2b (2277876/441347 : -974371/3089429 : 1)
** u= 26/17 ; tau(u)= -8/9 ; 514*x^2 - 98*y^2 + 740*x*z + 514*z^2
(-257/113 : -3084/791 : 1) C1a (-1/16 : -13/112 : 1)
** u= -28/25 ; tau(u)= 78/53 ; -4834*x^2 + 466*y^2 + 6868*x*z - 4834*z^2
(-21/1924 : 6245/1924 : 1) C2b (-52636/4231 : -9431/4231 : 1)
** u= -28/37 ; tau(u)= 102/65 ; -7666*x^2 + 1954*y^2 + 11188*x*z - 7666*z^2
(993/2230 : 3271/2230 : 1) C2b (-329553884/15673073 : 35935997/15673073 : 1)
** u= 28/65 ; tau(u)= 102/37 ; -1954*x^2 + 7666*y^2 + 11188*x*z - 1954*z^2
(-100/207 : -209/207 : 1) C1b (-310999/2852 : 16599/2852 : 1)
** u= -28/73 ; tau(u)= 174/101 ; -19618*x^2 + 9874*y^2 + 31060*x*z - 19618*z^2
(548/2247 : 2599/2247 : 1) C2b (-7182012/722555 : 119831/144511 : 1)
** u= 28/101 ; tau(u)= 174/73 ; -9874*x^2 + 19618*y^2 + 31060*x*z - 9874*z^2
(-7233/34846 : -32195/34846 : 1) C1b (-713004/206995 : 8915/41399 : 1)
** u= 29/4 ; tau(u)= 21/25 ; -409*x^2 - 809*y^2 + 1282*x*z - 409*z^2
(89/237 : 32/237 : 1) C1a (-801221/23392 : -44919/23392 : 1)
** u= -29/45 ; tau(u)= 119/74 ; -10111*x^2 + 3209*y^2 + 15002*x*z - 10111*z^2
(431/6563 : 11094/6563 : 1) C2b (-306348/138743 : -39367/138743 : 1)
** u= 29/81 ; tau(u)= 133/52 ; -4567*x^2 + 12281*y^2 + 18530*x*z - 4567*z^2
(17477/67823 : -5976/67823 : 1) C1b (6060439/1190601 : -318649/1190601 : 1)
** u= 29/193 ; tau(u)= 357/164 ; -52951*x^2 + 73657*y^2 + 128290*x*z - 52951*z^2
(1188069/498019 : -403076/498019 : 1) C1b (-8944829/4669 : -520803/4669 : 1)
** u= 33/149 ; tau(u)= 265/116 ; -25823*x^2 + 43313*y^2 + 71314*x*z - 25823*z^2
(60287/239769 : 112436/239769 : 1) C1b (-4030789/1061056 : -256071/1061056 : 1)
** u= 35/181 ; tau(u)= 327/146 ; -41407*x^2 + 64297*y^2 + 108154*x*z - 41407*z^2
(-49501/393027 : -365762/393027 : 1) C1b (-23683437/2018437 : -1403111/2018437 : 1)
** u= 39/49 ; tau(u)= 59/10 ; 1321*x^2 + 3281*y^2 + 5002*x*z + 1321*z^2
(-911/573 : 574/573 : 1) C1b (270671/31852 : 15291/31852 : 1)
** u= -39/89 ; tau(u)= 217/128 ; -31247*x^2 + 14321*y^2 + 48610*x*z - 31247*z^2
(-991/35023 : 52880/35023 : 1) C2b (-2257153/228217 : 195861/228217 : 1)
** u= 42/17 ; tau(u)= 8/25 ; 514*x^2 - 1186*y^2 + 1828*x*z + 514*z^2
(-157/721 : 248/721 : 1) C1a (-48961/16408 : -2577/16408 : 1)
** u= 42/29 ; tau(u)= -16/13 ; 1426*x^2 - 82*y^2 + 2020*x*z + 1426*z^2
(-173/167 : -542/167 : 1) C1a (-5321/6656 : -1041/6656 : 1)
** u= -43/153 ; tau(u)= 349/196 ; -74983*x^2 + 44969*y^2 + 123650*x*z - 74983*z^2
(-46909/149 : -60732/149 : 1) C2b (2109917/3250875 : 37867/650175 : 1)
** u= 44/61 ; tau(u)= 78/17 ; 1358*x^2 + 5506*y^2 + 8020*x*z + 1358*z^2
(-538/3053 : 149/3053 : 1) C1b (-231476/160039 : 13743/160039 : 1)
** u= -44/149 ; tau(u)= 342/193 ; -72562*x^2 + 42466*y^2 + 118900*x*z - 72562*z^2
(881/516 : -713/516 : 1) C2b (-29773/64867 : 6371/64867 : 1)
** u= -47/197 ; tau(u)= 441/244 ; -116863*x^2 + 75409*y^2 + 196690*x*z - 116863*z^2
(-29187/285947 : 387044/285947 : 1) C2b (-1267888/201205 : -19901/40241 : 1)
** u= -48/101 ; tau(u)= 250/149 ; -42098*x^2 + 18098*y^2 + 64804*x*z - 42098*z^2
(-37/22 : -85/22 : 1) C2b (700192/1791299 : -120069/1791299 : 1)
** u= 49/89 ; tau(u)= 129/40 ; -799*x^2 + 13441*y^2 + 19042*x*z - 799*z^2
(-1383/98507 : 27748/98507 : 1) C1b (-421672/140223 : -23621/140223 : 1)
** u= -52/37 ; tau(u)= 126/89 ; -13138*x^2 + 34*y^2 + 18580*x*z - 13138*z^2
(-1/2 : 55/2 : 1) C2b (1579/276 : 1441/276 : 1)
** u= 54/25 ; tau(u)= 4/29 ; 1234*x^2 - 1666*y^2 + 2932*x*z + 1234*z^2
(-83/152 : -25/1064 : 1) C1a (-116/3067 : -1237/21469 : 1)
** u= 54/37 ; tau(u)= -20/17 ; 2338*x^2 - 178*y^2 + 3316*x*z + 2338*z^2
(-1/230 : 831/230 : 1) C1a (-5452/11253 : -1591/11253 : 1)
** u= 55/137 ; tau(u)= 219/82 ; -10423*x^2 + 34513*y^2 + 50986*x*z - 10423*z^2
(18969/262357 : -116378/262357 : 1) C1b (1017956/830057 : 62973/830057 : 1)
** u= -55/153 ; tau(u)= 361/208 ; -83503*x^2 + 43793*y^2 + 133346*x*z - 83503*z^2
(-33275/14731 : 63384/14731 : 1) C2b (-1119392/1053751 : -150839/1053751 : 1)
** u= 56/61 ; tau(u)= 66/5 ; 3086*x^2 + 4306*y^2 + 7492*x*z + 3086*z^2
(-87/128 : -47/128 : 1) C1b (-69/131 : 7/131 : 1)
** u= 56/73 ; tau(u)= 90/17 ; 2558*x^2 + 7522*y^2 + 11236*x*z + 2558*z^2
(-209/863 : -36/863 : 1) C1b (54447171/400387 : -2940157/400387 : 1)
** u= -56/101 ; tau(u)= 258/157 ; -46162*x^2 + 17266*y^2 + 69700*x*z - 46162*z^2
(-6771/3641 : -16048/3641 : 1) C2b (-12255899/434144 : -1111991/434144 : 1)
** u= 56/109 ; tau(u)= 162/53 ; -2482*x^2 + 20626*y^2 + 29380*x*z - 2482*z^2
(53/8302 : -2769/8302 : 1) C1b (18231320/19561641 : -1347055/19561641 : 1)
** u= 57/97 ; tau(u)= 137/40 ; 49*x^2 + 15569*y^2 + 22018*x*z + 49*z^2
(-4611/113023 : 26396/113023 : 1) C1b (276977/302791 : 21549/302791 : 1)
** u= 57/109 ; tau(u)= 161/52 ; -2159*x^2 + 20513*y^2 + 29170*x*z - 2159*z^2
(-21933/71317 : 53012/71317 : 1) C1b (6587816/2931421 : -368691/2931421 : 1)
** u= 59/10 ; tau(u)= 39/49 ; -1321*x^2 - 3281*y^2 + 5002*x*z - 1321*z^2
(1025/347 : 266/347 : 1) C1a (-1610447/204724 : -91287/204724 : 1)
** u= -60/49 ; tau(u)= 158/109 ; -20162*x^2 + 1202*y^2 + 28564*x*z - 20162*z^2
(24/815 : -3269/815 : 1) C2b (-2409599/29057 : 522537/29057 : 1)
** u= 61/113 ; tau(u)= 165/52 ; -1687*x^2 + 21817*y^2 + 30946*x*z - 1687*z^2
(-38355/358771 : -24572/51253 : 1) C1b (-14639873/796657 : -772473/796657 : 1)
** u= 63/34 ; tau(u)= -5/29 ; 2287*x^2 - 1657*y^2 + 3994*x*z + 2287*z^2
(-295/911 : -786/911 : 1) C1a (435617/72777 : -32939/72777 : 1)
** u= 64/81 ; tau(u)= 98/17 ; 3518*x^2 + 9026*y^2 + 13700*x*z + 3518*z^2
(-121/131 : 108/131 : 1) C1b (-232008/282997 : 17201/282997 : 1)
** u= -64/121 ; tau(u)= 306/185 ; -64354*x^2 + 25186*y^2 + 97732*x*z - 64354*z^2
(-2515/28307 : 338602/198149 : 1) C2b (408/163 : -50759/293237 : 1)
** u= 65/181 ; tau(u)= 297/116 ; -22687*x^2 + 61297*y^2 + 92434*x*z - 22687*z^2
(-45603/84731 : -96196/84731 : 1) C1b (3182864/582517 : -167471/582517 : 1)
** u= 66/5 ; tau(u)= 56/61 ; -3086*x^2 - 4306*y^2 + 7492*x*z - 3086*z^2
(3501/2107 : -932/2107 : 1) C1a (988272/68591 : -55973/68591 : 1)
** u= 66/37 ; tau(u)= -8/29 ; 2674*x^2 - 1618*y^2 + 4420*x*z + 2674*z^2
(-172/151 : 125/151 : 1) C1a (-3049/1816 : 177/1816 : 1)
** u= -67/61 ; tau(u)= 189/128 ; -28279*x^2 + 2953*y^2 + 40210*x*z - 28279*z^2
(-271/511 : 2256/511 : 1) C2b (636573/1497512 : -186071/1497512 : 1)
** u= -68/125 ; tau(u)= 318/193 ; -69874*x^2 + 26626*y^2 + 105748*x*z - 69874*z^2
(-64/71 : 205/71 : 1) C2b (-282623/447516 : 58789/447516 : 1)
** u= -69/109 ; tau(u)= 287/178 ; -58607*x^2 + 19001*y^2 + 87130*x*z - 58607*z^2
(14889/16421 : 19858/16421 : 1) C2b (-153604279/137524 : -14517069/137524 : 1)
** u= 75/26 ; tau(u)= 23/49 ; 823*x^2 - 4273*y^2 + 6154*x*z + 823*z^2
(151/2201 : -1190/2201 : 1) C1a (191916/127823 : 761/7519 : 1)
** u= -76/81 ; tau(u)= 238/157 ; -43522*x^2 + 7346*y^2 + 62420*x*z - 43522*z^2
(427/796 : 1395/796 : 1) C2b (58812/436723 : 51167/436723 : 1)
** u= -76/169 ; tau(u)= 414/245 ; -114274*x^2 + 51346*y^2 + 177172*x*z - 114274*z^2
(7240/3743 : -7371/3743 : 1) C2b (22253964/1636253 : -1739899/1636253 : 1)
** u= 76/197 ; tau(u)= 318/121 ; -23506*x^2 + 71842*y^2 + 106900*x*z - 23506*z^2
(-81883/626328 : 454817/626328 : 1) C1b (-57467/3108 : -3133/3108 : 1)
** u= 77/32 ; tau(u)= 13/45 ; 1879*x^2 - 3881*y^2 + 6098*x*z + 1879*z^2
(-1235/19013 : -11784/19013 : 1) C1a (-2825632/153141 : -153829/153141 : 1)
** u= 77/85 ; tau(u)= 93/8 ; 5801*x^2 + 8521*y^2 + 14578*x*z + 5801*z^2
(-11/7 : -4/7 : 1) C1b (-849376/415683 : -45179/415683 : 1)
** u= 77/97 ; tau(u)= 117/20 ; 5129*x^2 + 12889*y^2 + 19618*x*z + 5129*z^2
(-289/465 : 292/465 : 1) C1b (12085743/13215904 : 1094101/13215904 : 1)
** u= -77/101 ; tau(u)= 279/178 ; -57439*x^2 + 14473*y^2 + 83770*x*z - 57439*z^2
(-73329/562759 : 1231694/562759 : 1) C2b (1206348/963037 : 94291/963037 : 1)
** u= 77/117 ; tau(u)= 157/40 ; 2729*x^2 + 21449*y^2 + 30578*x*z + 2729*z^2
(-1841/14005 : 3372/14005 : 1) C1b (1581784/415399 : -87997/415399 : 1)
** u= -77/197 ; tau(u)= 471/274 ; -144223*x^2 + 71689*y^2 + 227770*x*z - 144223*z^2
(22227/54923 : -56426/54923 : 1) C2b (918964/696705 : 11329/139341 : 1)
** u= 78/17 ; tau(u)= 44/61 ; -1358*x^2 - 5506*y^2 + 8020*x*z - 1358*z^2
(84/481 : -7/481 : 1) C1a (-2913/4465 : -61/893 : 1)
** u= 78/53 ; tau(u)= -28/25 ; 4834*x^2 - 466*y^2 + 6868*x*z + 4834*z^2
(-1877/1242 : 4265/1242 : 1) C1a (-76588/17371 : 11097/17371 : 1)
** u= 79/34 ; tau(u)= 11/45 ; 2191*x^2 - 3929*y^2 + 6362*x*z + 2191*z^2
(2623/19121 : -16998/19121 : 1) C1a (29876/70293 : 4789/70293 : 1)
** u= -79/121 ; tau(u)= 321/200 ; -73759*x^2 + 23041*y^2 + 109282*x*z - 73759*z^2
(9157/1303 : -14740/1303 : 1) C2b (6491823/49553 : -620401/49553 : 1)
** u= -79/153 ; tau(u)= 385/232 ; -101407*x^2 + 40577*y^2 + 154466*x*z - 101407*z^2
(-775/18251 : 29796/18251 : 1) C2b (-246601/1127249 : -112091/1127249 : 1)
** u= 81/32 ; tau(u)= 17/49 ; 1759*x^2 - 4513*y^2 + 6850*x*z + 1759*z^2
(-503/97 : -168/97 : 1) C1a (-232008/282997 : 17201/282997 : 1)
** u= 83/85 ; tau(u)= 87/2 ; 6881*x^2 + 7561*y^2 + 14458*x*z + 6881*z^2
(-3063/2645 : -766/2645 : 1) C1b (203693/47787 : 14047/47787 : 1)
** u= -84/137 ; tau(u)= 358/221 ; -90626*x^2 + 30482*y^2 + 135220*x*z - 90626*z^2
(-7319/14552 : 35515/14552 : 1) C2b (46063727/2661703 : 4117701/2661703 : 1)
** u= 84/169 ; tau(u)= 254/85 ; -7394*x^2 + 50066*y^2 + 71572*x*z - 7394*z^2
(-50334/1786943 : -774943/1786943 : 1) C1b (43411397/624229 : 2286237/624229 : 1)
** u= 87/2 ; tau(u)= 83/85 ; -6881*x^2 - 7561*y^2 + 14458*x*z - 6881*z^2
(2373/1879 : -434/1879 : 1) C1a (3486388/253061 : -205749/253061 : 1)
** u= -87/157 ; tau(u)= 401/244 ; -111503*x^2 + 41729*y^2 + 168370*x*z - 111503*z^2
(22233/7567 : 4028/1081 : 1) C2b (-286441/4145296 : -384549/4145296 : 1)
** u= -88/81 ; tau(u)= 250/169 ; -49378*x^2 + 5378*y^2 + 70244*x*z - 49378*z^2
(7019/8711 : 18720/8711 : 1) C2b (36456/294017 : -42983/294017 : 1)
** u= 88/89 ; tau(u)= 90 ; 7742*x^2 + 8098*y^2 + 15844*x*z + 7742*z^2
(-823/680 : 73/680 : 1) C1b (-39121/272383 : -15767/272383 : 1)
** u= 89/153 ; tau(u)= 217/64 ; -271*x^2 + 38897*y^2 + 55010*x*z - 271*z^2
(-9071/1401919 : 177984/1401919 : 1) C1b (40251384/11339971 : 2190727/11339971 : 1)
** u= 90 ; tau(u)= 88/89 ; -7742*x^2 - 8098*y^2 + 15844*x*z - 7742*z^2
(1783/2152 : -201/2152 : 1) C1a (-107073/34561 : 463/2033 : 1)
** u= 90/17 ; tau(u)= 56/73 ; -2558*x^2 - 7522*y^2 + 11236*x*z - 2558*z^2
(209/863 : -36/863 : 1) C1a (33904/75843 : 77/1431 : 1)
** u= 90/53 ; tau(u)= -16/37 ; 5362*x^2 - 2482*y^2 + 8356*x*z + 5362*z^2
(929/148 : -1541/148 : 1) C1a (-2784/3239 : 209/3239 : 1)
** u= -91/153 ; tau(u)= 397/244 ; -110791*x^2 + 38537*y^2 + 165890*x*z - 110791*z^2
(-409/521 : 1476/521 : 1) C2b (716395/1115781 : 76045/1115781 : 1)
** u= 91/173 ; tau(u)= 255/82 ; -5167*x^2 + 51577*y^2 + 73306*x*z - 5167*z^2
(56029/798909 : -25202/798909 : 1) C1b (1350127/68932 : 70833/68932 : 1)
** u= 92/117 ; tau(u)= 142/25 ; 7214*x^2 + 18914*y^2 + 28628*x*z + 7214*z^2
(-20/13 : -93/91 : 1) C1b (364/24723 : -9427/173061 : 1)
** u= 92/157 ; tau(u)= 222/65 ; 14*x^2 + 40834*y^2 + 57748*x*z + 14*z^2
(-3276/113 : -721/113 : 1) C1b (-1086343/219452 : -58131/219452 : 1)
** u= 93/8 ; tau(u)= 77/85 ; -5801*x^2 - 8521*y^2 + 14578*x*z - 5801*z^2
(44093/83833 : -14692/83833 : 1) C1a (-2208/81481 : -4753/81481 : 1)
** u= 94/53 ; tau(u)= -12/41 ; 5474*x^2 - 3218*y^2 + 8980*x*z + 5474*z^2
(-2259/946 : 2059/946 : 1) C1a (-4854644/820261 : -324417/820261 : 1)
** u= -96/97 ; tau(u)= 290/193 ; -65282*x^2 + 9602*y^2 + 93316*x*z - 65282*z^2
(107/355 : -752/355 : 1) C2b (49352/493501 : 63297/493501 : 1)
** u= 96/113 ; tau(u)= 130/17 ; 8638*x^2 + 16322*y^2 + 26116*x*z + 8638*z^2
(-3161/1527 : 1096/1527 : 1) C1b (-28025096/28484963 : 1823967/28484963 : 1)
** u= 97/52 ; tau(u)= -7/45 ; 5359*x^2 - 4001*y^2 + 9458*x*z + 5359*z^2
(-107/173 : -108/173 : 1) C1a (-930464/363437 : -53167/363437 : 1)
** u= -97/153 ; tau(u)= 403/250 ; -115591*x^2 + 37409*y^2 + 171818*x*z - 115591*z^2
(-86399/4872529 : -8678490/4872529 : 1) C2b (851396/914007 : -67721/914007 : 1)
** u= 98/17 ; tau(u)= 64/81 ; -3518*x^2 - 9026*y^2 + 13700*x*z - 3518*z^2
(1363/2147 : 1386/2147 : 1) C1a (838200/375521 : -44875/375521 : 1)
** u= 99/50 ; tau(u)= -1/49 ; 4999*x^2 - 4801*y^2 + 9802*x*z + 4999*z^2
(-4759/5571 : -1330/5571 : 1) C1a (2607001/47473 : 5719/1637 : 1)
** u= 100/113 ; tau(u)= 126/13 ; 9662*x^2 + 15538*y^2 + 25876*x*z + 9662*z^2
(-1663/2862 : -1055/2862 : 1) C1b (20089244/475311 : -1153867/475311 : 1)
** u= 102/37 ; tau(u)= 28/65 ; 1954*x^2 - 7666*y^2 + 11188*x*z + 1954*z^2
(-4/3757 : 1891/3757 : 1) C1a (388124/87823 : 21987/87823 : 1)
** u= 102/49 ; tau(u)= 4/53 ; 4786*x^2 - 5602*y^2 + 10420*x*z + 4786*z^2
(-977/6072 : 4613/6072 : 1) C1a (49012/44337 : -4799/44337 : 1)
** u= 102/65 ; tau(u)= -28/37 ; 7666*x^2 - 1954*y^2 + 11188*x*z + 7666*z^2
(-1466/4283 : 6667/4283 : 1) C1a (-88988/28509 : -7651/28509 : 1)
** u= 103/113 ; tau(u)= 123/10 ; 10409*x^2 + 14929*y^2 + 25738*x*z + 10409*z^2
(-652957/1239051 : -164698/1239051 : 1) C1b (-2931244/240831 : 164617/240831 : 1)
** u= -104/125 ; tau(u)= 354/229 ; -94066*x^2 + 20434*y^2 + 136132*x*z - 94066*z^2
(-1577/3783 : 10820/3783 : 1) C2b (-4329383/2014369 : 672117/2014369 : 1)
** u= 105/52 ; tau(u)= 1/53 ; 5407*x^2 - 5617*y^2 + 11026*x*z + 5407*z^2
(-1583/473 : 1076/473 : 1) C1a (756381/48608 : -48287/48608 : 1)
** u= 105/64 ; tau(u)= -23/41 ; 7663*x^2 - 2833*y^2 + 11554*x*z + 7663*z^2
(2309/661 : 4672/661 : 1) C1a (-33439/53064 : 3541/53064 : 1)
** u= -112/81 ; tau(u)= 274/193 ; -61954*x^2 + 578*y^2 + 87620*x*z - 61954*z^2
(19 : 3222/17 : 1) C2b (-4497/128 : -42361/2176 : 1)
** u= 112/149 ; tau(u)= 186/37 ; 9806*x^2 + 31858*y^2 + 47140*x*z + 9806*z^2
(-5417/15609 : -6410/15609 : 1) C1b (13231989/4338445 : 158363/867689 : 1)
** u= -116/89 ; tau(u)= 294/205 ; -70594*x^2 + 2386*y^2 + 99892*x*z - 70594*z^2
(1517/2760 : 10871/2760 : 1) C2b (233783/223503 : 50051/223503 : 1)
** u= -116/149 ; tau(u)= 414/265 ; -126994*x^2 + 30946*y^2 + 184852*x*z - 126994*z^2
(-1510/2383 : 7359/2383 : 1) C2b (-2380516/169053 : 7283/4569 : 1)
** u= -116/173 ; tau(u)= 462/289 ; -153586*x^2 + 46402*y^2 + 226900*x*z - 153586*z^2
(36268/70407 : 90967/70407 : 1) C2b (-6488467/126237 : 641261/126237 : 1)
** u= 117/20 ; tau(u)= 77/97 ; -5129*x^2 - 12889*y^2 + 19618*x*z - 5129*z^2
(10239/33971 : 232/1477 : 1) C1a (-4133128/4374723 : -367771/4374723 : 1)
** u= 119/74 ; tau(u)= -29/45 ; 10111*x^2 - 3209*y^2 + 15002*x*z + 10111*z^2
(905/187 : 1866/187 : 1) C1a (22572/23489 : -4019/23489 : 1)
** u= 123/10 ; tau(u)= 103/113 ; -10409*x^2 - 14929*y^2 + 25738*x*z - 10409*z^2
(6507/12569 : 1154/12569 : 1) C1a (1616084/740301 : 85747/740301 : 1)
** u= 126/13 ; tau(u)= 100/113 ; -9662*x^2 - 15538*y^2 + 25876*x*z - 9662*z^2
(716/1529 : -225/1529 : 1) C1a (-38938532/1910221 : 2259257/1910221 : 1)
** u= 126/89 ; tau(u)= -52/37 ; 13138*x^2 - 34*y^2 + 18580*x*z + 13138*z^2
(-211/1076 : 18453/1076 : 1) C1a (457884/44501 : 505613/44501 : 1)
** u= 129/40 ; tau(u)= 49/89 ; 799*x^2 - 13441*y^2 + 19042*x*z + 799*z^2
(-349/27159 : -5516/27159 : 1) C1a (3654848/432619 : 194163/432619 : 1)
** u= 130/17 ; tau(u)= 96/113 ; -8638*x^2 - 16322*y^2 + 26116*x*z - 8638*z^2
(59271/31369 : 24392/31369 : 1) C1a (139105264/60700771 : 7370091/60700771 : 1)
** u= -132/109 ; tau(u)= 350/241 ; -98738*x^2 + 6338*y^2 + 139924*x*z - 98738*z^2
(116/1119 : 4105/1119 : 1) C2b (-1496956/812917 : 445419/812917 : 1)
** u= 132/137 ; tau(u)= 142/5 ; 17374*x^2 + 20114*y^2 + 37588*x*z + 17374*z^2
(-1351/1944 : -259/1944 : 1) C1b (1098364/673643 : 92319/673643 : 1)
** u= 132/197 ; tau(u)= 262/65 ; 8974*x^2 + 60194*y^2 + 86068*x*z + 8974*z^2
(-213/100 : 149/100 : 1) C1b (3004444/3946679 : -274443/3946679 : 1)
** u= 133/52 ; tau(u)= 29/81 ; 4567*x^2 - 12281*y^2 + 18530*x*z + 4567*z^2
(-37/4267 : -2556/4267 : 1) C1a (-48894648/728335 : -527933/145667 : 1)
** u= 133/149 ; tau(u)= 165/16 ; 17177*x^2 + 26713*y^2 + 44914*x*z + 17177*z^2
(-7623/3959 : 1816/3959 : 1) C1b (1341376/1746601 : -147399/1746601 : 1)
** u= 137/40 ; tau(u)= 57/97 ; -49*x^2 - 15569*y^2 + 22018*x*z - 49*z^2
(2551/3427 : -3508/3427 : 1) C1a (-295864592/755389 : 15519363/755389 : 1)
** u= 139/197 ; tau(u)= 255/58 ; 12593*x^2 + 58297*y^2 + 84346*x*z + 12593*z^2
(-14107/72105 : -17482/72105 : 1) C1b (31107227/4918389 : -1708949/4918389 : 1)
** u= -140/101 ; tau(u)= 342/241 ; -96562*x^2 + 802*y^2 + 136564*x*z - 96562*z^2
(-2709/3610 : -64171/3610 : 1) C2b (11381/157 : -6487/157 : 1)
** u= 142/5 ; tau(u)= 132/137 ; -17374*x^2 - 20114*y^2 + 37588*x*z - 17374*z^2
(4380/3017 : 73/431 : 1) C1a (608156/712703 : 41649/712703 : 1)
** u= 142/25 ; tau(u)= 92/117 ; -7214*x^2 - 18914*y^2 + 28628*x*z - 7214*z^2
(76/281 : -15/1967 : 1) C1a (-3108/13883 : 5687/97181 : 1)
** u= 146/85 ; tau(u)= -24/61 ; 13874*x^2 - 6866*y^2 + 21892*x*z + 13874*z^2
(-1853/688 : 1957/688 : 1) C1a (-10235056/662357 : 774111/662357 : 1)
** u= 147/181 ; tau(u)= 215/34 ; 19297*x^2 + 43913*y^2 + 67834*x*z + 19297*z^2
(-21325/10539 : 9926/10539 : 1) C1b (-3787052/1432709 : 199983/1432709 : 1)
** u= -151/121 ; tau(u)= 393/272 ; -125167*x^2 + 6481*y^2 + 177250*x*z - 125167*z^2
(40129/72447 : -230120/72447 : 1) C2b (-3579112/3605057 : 1530603/3605057 : 1)
** u= -152/117 ; tau(u)= 386/269 ; -121618*x^2 + 4274*y^2 + 172100*x*z - 121618*z^2
(967/802 : -3699/802 : 1) C2b (-334368/1080233 : -374387/1080233 : 1)
** u= 152/169 ; tau(u)= 186/17 ; 22526*x^2 + 34018*y^2 + 57700*x*z + 22526*z^2
(-1559/2961 : 92/423 : 1) C1b (8770051/354264 : 512083/354264 : 1)
** u= 157/40 ; tau(u)= 77/117 ; -2729*x^2 - 21449*y^2 + 30578*x*z - 2729*z^2
(18515/11623 : 15684/11623 : 1) C1a (-2121769/1637263 : 147109/1637263 : 1)
** u= -157/117 ; tau(u)= 391/274 ; -125503*x^2 + 2729*y^2 + 177530*x*z - 125503*z^2
(35143/986239 : 6521790/986239 : 1) C2b (262996/754129 : 212699/754129 : 1)
** u= 158/109 ; tau(u)= -60/49 ; 20162*x^2 - 1202*y^2 + 28564*x*z + 20162*z^2
(219/964 : -4627/964 : 1) C1a (-222769/64436 : 39363/64436 : 1)
** u= 161/52 ; tau(u)= 57/109 ; 2159*x^2 - 20513*y^2 + 29170*x*z + 2159*z^2
(-717/10423 : -928/10423 : 1) C1a (-616864/1787681 : -97173/1787681 : 1)
** u= 162/53 ; tau(u)= 56/109 ; 2482*x^2 - 20626*y^2 + 29380*x*z + 2482*z^2
(-13957/169373 : -10404/169373 : 1) C1a (-17415288/18488863 : 1279471/18488863 : 1)
** u= 165/16 ; tau(u)= 133/149 ; -17177*x^2 - 26713*y^2 + 44914*x*z - 17177*z^2
(11987/10795 : -7088/10795 : 1) C1a (-264871091/1201197 : 15175357/1201197 : 1)
** u= 165/52 ; tau(u)= 61/113 ; 1687*x^2 - 21817*y^2 + 30946*x*z + 1687*z^2
(-79315/2559901 : 468196/2559901 : 1) C1a (-265576/395841 : 24401/395841 : 1)
** u= 169/185 ; tau(u)= 201/16 ; 28049*x^2 + 39889*y^2 + 68962*x*z + 28049*z^2
(-39447/20951 : 728/2993 : 1) C1b (1508701/3715643 : 263497/3715643 : 1)
** u= 171/82 ; tau(u)= 7/89 ; 13399*x^2 - 15793*y^2 + 29290*x*z + 13399*z^2
(65479/50449 : 109194/50449 : 1) C1a (-740372/763447 : -47063/763447 : 1)
** u= 172/173 ; tau(u)= 174 ; 29582*x^2 + 30274*y^2 + 59860*x*z + 29582*z^2
(-287/264 : 35/264 : 1) C1b (4834412/1947527 : -374559/1947527 : 1)
** u= 174 ; tau(u)= 172/173 ; -29582*x^2 - 30274*y^2 + 59860*x*z - 29582*z^2
(764/861 : 11/123 : 1) C1a (1839244/261249 : 106999/261249 : 1)
** u= 174/73 ; tau(u)= 28/101 ; 9874*x^2 - 19618*y^2 + 31060*x*z + 9874*z^2
(-7/148 : 97/148 : 1) C1a (4156148/146257 : -233373/146257 : 1)
** u= 174/101 ; tau(u)= -28/73 ; 19618*x^2 - 9874*y^2 + 31060*x*z + 19618*z^2
(-1546/1179 : 1333/1179 : 1) C1a (-4675388/311313 : -350881/311313 : 1)
** u= 179/98 ; tau(u)= -17/81 ; 18919*x^2 - 12833*y^2 + 32330*x*z + 18919*z^2
(-4189/3469 : 2646/3469 : 1) C1a (1396964/561121 : -124919/561121 : 1)
** u= -183/137 ; tau(u)= 457/320 ; -171311*x^2 + 4049*y^2 + 242338*x*z - 171311*z^2
(-74901/281509 : -2202784/281509 : 1) C2b (-23293/63376 : 27819/63376 : 1)
** u= 186/17 ; tau(u)= 152/169 ; -22526*x^2 - 34018*y^2 + 57700*x*z - 22526*z^2
(96751/193929 : -26884/193929 : 1) C1a (-340624/685921 : -50373/685921 : 1)
** u= 186/37 ; tau(u)= 112/149 ; -9806*x^2 - 31858*y^2 + 47140*x*z - 9806*z^2
(353/1617 : 38/1617 : 1) C1a (368/15635 : 167/3127 : 1)
** u= -187/169 ; tau(u)= 525/356 ; -218503*x^2 + 22153*y^2 + 310594*x*z - 218503*z^2
(36403/54837 : -121420/54837 : 1) C2b (3260203/553344 : 478583/553344 : 1)
** u= 189/128 ; tau(u)= -67/61 ; 28279*x^2 - 2953*y^2 + 40210*x*z + 28279*z^2
(1487/8383 : 29392/8383 : 1) C1a (-501960/1053923 : 128015/1053923 : 1)
182
>
ここからは、 "A^4+B^4+C^4=3362*D^4の整点" と同様なので、最終的に得られた(1)の整点のみを記述する。
ここで、対応する整点が見つかった各有理数uについて、0 <= A <= B <=C を満たすように、A,B,Cを交換して、Dの小さい順に(1)の等式を並べ替えると、以下のようになる。
[参考文献]
- [1]Noam Elkies, "On A^4+B^4+C^4=D^4", Math Comp. 51(184), p824-835, 1988.
- [2]StarkExchange MATHEMATICS, "Distribution of Primitive Pytagorean Triples (PPT) and of solutions of A^4+B^4+C^4=D^4", 2016/07/08.
- [3]StarkExchange MATHEMATICS, "More elliptic curves for x^4+y^4+z^4=1?", 2017/07/28.
- [4]Tom Womack, "The quartic surfaces x^4+y^4+z^4=N", 2013/05/17.
- [5]Tom Womack, "elk18.mag", 2013/06/07.
- [6]Tom Womack, "elk18.pts", 2013/06/07.
- [7]Tom Womack, "Integer points on x^4+y^4+z^4=Nt^4", 2013/06/07.
- [8]StarkExchange MATHEMATICS, "a^4+b^4+c^4=2*d^2 such that a,b,c,d are all nonzero Integers & a+b+c!=0", 2024/04/26.
| Last Update: 2026.01.29 |
| H.Nakao |