> P2:= ProjectiveSpace(Rationals(), 2); > N:=197; > C := Conic(P2,-N*y^2+x^2+x*z+z^2); > HasRationalPoint(C); false >
> PP(197,1,200); ** u= -1 ; tau(u)= 3/2 ; -7*x^2 + y^2 + 10*x*z - 7*z^2 (1 : -2 : 1) C2b (-169/109 : 41/109 : 1) ** u= 3/2 ; tau(u)= -1 ; 7*x^2 - y^2 + 10*x*z + 7*z^2 (-7/3 : -14/3 : 1) C1a (-8/87 : -13/87 : 1) ** u= 4/17 ; tau(u)= 30/13 ; -322*x^2 + 562*y^2 + 916*x*z - 322*z^2 (9/22 : -1/22 : 1) C1b (-139016/14887 : 9321/14887 : 1) ** u= -4/25 ; tau(u)= 54/29 ; -1666*x^2 + 1234*y^2 + 2932*x*z - 1666*z^2 (-61/4 : -75/4 : 1) C2b (21831/20464 : 1529/20464 : 1) ** u= -4/37 ; tau(u)= 78/41 ; -3346*x^2 + 2722*y^2 + 6100*x*z - 3346*z^2 (7/12 : 7/12 : 1) C2b (38299/4216 : 2727/4216 : 1) ** u= 4/149 ; tau(u)= 294/145 ; -42034*x^2 + 44386*y^2 + 86452*x*z - 42034*z^2 (31760/47417 : -12299/47417 : 1) C1b (26343/15896 : 1633/15896 : 1) ** u= 7/9 ; tau(u)= 11/2 ; 41*x^2 + 113*y^2 + 170*x*z + 41*z^2 (-137/187 : -138/187 : 1) C1b (-5672/2083 : 343/2083 : 1) ** u= -7/13 ; tau(u)= 33/20 ; -751*x^2 + 289*y^2 + 1138*x*z - 751*z^2 (5/3 : 92/51 : 1) C2b (-13548/719 : -23849/12223 : 1) ** u= -7/153 ; tau(u)= 313/160 ; -51151*x^2 + 46769*y^2 + 98018*x*z - 51151*z^2 (5491/19333 : 14808/19333 : 1) C2b (4889836/2845531 : -304973/2845531 : 1) ** u= 8/45 ; tau(u)= 82/37 ; -2674*x^2 + 3986*y^2 + 6788*x*z - 2674*z^2 (1091/227423 : -26448/32489 : 1) C1b (-18908/1429 : -1283/1429 : 1) ** u= -8/45 ; tau(u)= 98/53 ; -5554*x^2 + 3986*y^2 + 9668*x*z - 5554*z^2 (172/241 : -147/241 : 1) C2b (414884/85247 : -29227/85247 : 1) ** u= 8/73 ; tau(u)= 138/65 ; -8386*x^2 + 10594*y^2 + 19108*x*z - 8386*z^2 (-950/2397 : -3061/2397 : 1) C1b (-3361071/98869 : 230423/98869 : 1) ** u= 11/2 ; tau(u)= 7/9 ; -41*x^2 - 113*y^2 + 170*x*z - 41*z^2 (17/43 : 18/43 : 1) C1a (-7/13 : 1/13 : 1) ** u= 12/13 ; tau(u)= 14 ; 142*x^2 + 194*y^2 + 340*x*z + 142*z^2 (-144/119 : -67/119 : 1) C1b (-44195/11777 : 2715/11777 : 1) ** u= 12/49 ; tau(u)= 86/37 ; -2594*x^2 + 4658*y^2 + 7540*x*z - 2594*z^2 (3036/1153 : -455/1153 : 1) C1b (569960/106027 : -34785/106027 : 1) ** u= -12/113 ; tau(u)= 238/125 ; -31106*x^2 + 25394*y^2 + 56788*x*z - 31106*z^2 (-1103/1008 : 2285/1008 : 1) C2b (2681881/1307357 : -169479/1307357 : 1) ** u= 12/181 ; tau(u)= 350/169 ; -56978*x^2 + 65378*y^2 + 122644*x*z - 56978*z^2 (2050/4697 : 2197/4697 : 1) C1b (1072711/290216 : 67101/290216 : 1) ** u= 14 ; tau(u)= 12/13 ; -142*x^2 - 194*y^2 + 340*x*z - 142*z^2 (2/3 : -1/3 : 1) C1a (-24280/2477 : 1695/2477 : 1) ** u= -15/121 ; tau(u)= 257/136 ; -36767*x^2 + 29057*y^2 + 66274*x*z - 36767*z^2 (245/223 : 836/1561 : 1) C2b (620956/1778519 : 811809/12449633 : 1) ** u= 16/65 ; tau(u)= 114/49 ; -4546*x^2 + 8194*y^2 + 13252*x*z - 4546*z^2 (3429/1247 : 686/1247 : 1) C1b (7172/1393 : 437/1393 : 1) ** u= 16/173 ; tau(u)= 330/157 ; -49042*x^2 + 59602*y^2 + 109156*x*z - 49042*z^2 (28877/110699 : -70106/110699 : 1) C1b (3594239/2811283 : -233627/2811283 : 1) ** u= 17/81 ; tau(u)= 145/64 ; -7903*x^2 + 12833*y^2 + 21314*x*z - 7903*z^2 (79/1393 : -144/199 : 1) C1b (-12156028/1229079 : -822181/1229079 : 1) ** u= -19/61 ; tau(u)= 141/80 ; -12439*x^2 + 7081*y^2 + 20242*x*z - 12439*z^2 (-46883/215739 : -338432/215739 : 1) C2b (-3781/23249 : 2193/23249 : 1) ** u= -20/29 ; tau(u)= 78/49 ; -4402*x^2 + 1282*y^2 + 6484*x*z - 4402*z^2 (5/2 : 7/2 : 1) C2b (31808/1959 : -3457/1959 : 1) ** u= -20/81 ; tau(u)= 182/101 ; -20002*x^2 + 12722*y^2 + 33524*x*z - 20002*z^2 (-106/677 : -963/677 : 1) C2b (-359192/221959 : 42763/221959 : 1) ** u= 21/61 ; tau(u)= 101/40 ; -2759*x^2 + 7001*y^2 + 10642*x*z - 2759*z^2 (-987/26695 : -17924/26695 : 1) C1b (-28025684/507527 : 1749201/507527 : 1) ** u= 21/157 ; tau(u)= 293/136 ; -36551*x^2 + 48857*y^2 + 86290*x*z - 36551*z^2 (78457/165587 : 46612/165587 : 1) C1b (2157595/328316 : 136605/328316 : 1) ** u= 23/49 ; tau(u)= 75/26 ; -823*x^2 + 4273*y^2 + 6154*x*z - 823*z^2 (4943/44507 : -8330/44507 : 1) C1b (969992/237567 : 58483/237567 : 1) ** u= 24/125 ; tau(u)= 226/101 ; -19826*x^2 + 30674*y^2 + 51652*x*z - 19826*z^2 (-696/1915 : -15539/13405 : 1) C1b (-34033/1771 : 15903/12397 : 1) ** u= -25/49 ; tau(u)= 123/74 ; -10327*x^2 + 4177*y^2 + 15754*x*z - 10327*z^2 (4143/1483 : -4970/1483 : 1) C2b (-127523/97423 : 20061/97423 : 1) ** u= 28/89 ; tau(u)= 150/61 ; -6658*x^2 + 15058*y^2 + 23284*x*z - 6658*z^2 (-5608/26373 : -23455/26373 : 1) C1b (-773039/448448 : 62551/448448 : 1) ** u= 28/153 ; tau(u)= 278/125 ; -30466*x^2 + 46034*y^2 + 78068*x*z - 30466*z^2 (14806/46759 : 20445/46759 : 1) C1b (-114277/240591 : -19943/240591 : 1) ** u= 30/13 ; tau(u)= 4/17 ; 322*x^2 - 562*y^2 + 916*x*z + 322*z^2 (-324/107 : 101/107 : 1) C1a (-653/2689 : 163/2689 : 1) ** u= 32/37 ; tau(u)= 42/5 ; 974*x^2 + 1714*y^2 + 2788*x*z + 974*z^2 (-9/22 : 1/22 : 1) C1b (-59476/11789 : -3627/11789 : 1) ** u= 32/145 ; tau(u)= 258/113 ; -24514*x^2 + 41026*y^2 + 67588*x*z - 24514*z^2 (417/12094 : 8899/12094 : 1) C1b (33205897/2224429 : -2099313/2224429 : 1) ** u= 33/20 ; tau(u)= -7/13 ; 751*x^2 - 289*y^2 + 1138*x*z + 751*z^2 (-1/583 : 15956/9911 : 1) C1a (-7/4 : -9/68 : 1) ** u= 35/37 ; tau(u)= 39/2 ; 1217*x^2 + 1513*y^2 + 2746*x*z + 1217*z^2 (-5/7 : -2/7 : 1) C1b (96241/14747 : 7033/14747 : 1) ** u= -35/173 ; tau(u)= 381/208 ; -85303*x^2 + 58633*y^2 + 146386*x*z - 85303*z^2 (-83483/163555 : -288352/163555 : 1) C2b (23973484/2049743 : -1818127/2049743 : 1) ** u= 37/41 ; tau(u)= 45/4 ; 1337*x^2 + 1993*y^2 + 3394*x*z + 1337*z^2 (-1579/835 : -324/835 : 1) C1b (-27612/893 : 1793/893 : 1) ** u= 39/2 ; tau(u)= 35/37 ; -1217*x^2 - 1513*y^2 + 2746*x*z - 1217*z^2 (7/5 : -2/5 : 1) C1a (1420056/23743 : 95677/23743 : 1) ** u= 40/113 ; tau(u)= 186/73 ; -9058*x^2 + 23938*y^2 + 36196*x*z - 9058*z^2 (1085/8289 : 3584/8289 : 1) C1b (1318308/193697 : -79519/193697 : 1) ** u= 41/169 ; tau(u)= 297/128 ; -31087*x^2 + 55441*y^2 + 89890*x*z - 31087*z^2 (8479/49169 : 26832/49169 : 1) C1b (-26843347/4481188 : 1841261/4481188 : 1) ** u= 42/5 ; tau(u)= 32/37 ; -974*x^2 - 1714*y^2 + 2788*x*z - 974*z^2 (141/59 : 16/59 : 1) C1a (673004/77197 : -2457/4541 : 1) ** u= -43/85 ; tau(u)= 213/128 ; -30919*x^2 + 12601*y^2 + 47218*x*z - 30919*z^2 (-5899/16283 : 33104/16283 : 1) C2b (3344084/3166537 : -264247/3166537 : 1) ** u= 44/73 ; tau(u)= 102/29 ; 254*x^2 + 8722*y^2 + 12340*x*z + 254*z^2 (-1817/6018 : -26489/42126 : 1) C1b (61376/40191 : -31063/281337 : 1) ** u= -44/113 ; tau(u)= 270/157 ; -47362*x^2 + 23602*y^2 + 74836*x*z - 47362*z^2 (10997/5944 : -10311/5944 : 1) C2b (-1699761/121648 : 159613/121648 : 1) ** u= -44/149 ; tau(u)= 342/193 ; -72562*x^2 + 42466*y^2 + 118900*x*z - 72562*z^2 (881/516 : -713/516 : 1) C2b (-141032625/9122192 : -12373205/9122192 : 1) ** u= 44/153 ; tau(u)= 262/109 ; -21826*x^2 + 44882*y^2 + 70580*x*z - 21826*z^2 (848/9509 : -5625/9509 : 1) C1b (38528/44195 : 617/8839 : 1) ** u= 45/4 ; tau(u)= 37/41 ; -1337*x^2 - 1993*y^2 + 3394*x*z - 1337*z^2 (749/433 : -224/433 : 1) C1a (-18908/1429 : -1283/1429 : 1) ** u= 47/145 ; tau(u)= 243/98 ; -16999*x^2 + 39841*y^2 + 61258*x*z - 16999*z^2 (-62651/854813 : 629118/854813 : 1) C1b (-4594157/690096 : -301813/690096 : 1) ** u= 49/149 ; tau(u)= 249/100 ; -17599*x^2 + 42001*y^2 + 64402*x*z - 17599*z^2 (-91869/133069 : -172340/133069 : 1) C1b (-6467099492/160090529 : -406284911/160090529 : 1) ** u= 52/113 ; tau(u)= 174/61 ; -4738*x^2 + 22834*y^2 + 32980*x*z - 4738*z^2 (-4519/10322 : -67765/72254 : 1) C1b (-49923/3928 : 21461/27496 : 1) ** u= -53/45 ; tau(u)= 143/98 ; -16399*x^2 + 1241*y^2 + 23258*x*z - 16399*z^2 (7499/8195 : -21882/8195 : 1) C2b (9454231/9951309 : 1628281/9951309 : 1) ** u= 54/29 ; tau(u)= -4/25 ; 1666*x^2 - 1234*y^2 + 2932*x*z + 1666*z^2 (-274/449 : 285/449 : 1) C1a (-5336/3079 : 341/3079 : 1) ** u= 56/97 ; tau(u)= 138/41 ; -226*x^2 + 15682*y^2 + 22180*x*z - 226*z^2 (114/11737 : -305/11737 : 1) C1b (-1960364/475311 : -121139/475311 : 1) ** u= 56/145 ; tau(u)= 234/89 ; -12706*x^2 + 38914*y^2 + 57892*x*z - 12706*z^2 (-4351/433281 : 253196/433281 : 1) C1b (278487/1149364 : -68923/1149364 : 1) ** u= 57/109 ; tau(u)= 161/52 ; -2159*x^2 + 20513*y^2 + 29170*x*z - 2159*z^2 (-21933/71317 : 53012/71317 : 1) C1b (259892/724405 : -9027/144881 : 1) ** u= -60/49 ; tau(u)= 158/109 ; -20162*x^2 + 1202*y^2 + 28564*x*z - 20162*z^2 (24/815 : -3269/815 : 1) C2b (21592/13631 : 3777/13631 : 1) ** u= -60/61 ; tau(u)= 182/121 ; -25682*x^2 + 3842*y^2 + 36724*x*z - 25682*z^2 (512045/261178 : -964513/261178 : 1) C2b (7928/4519 : -897/4519 : 1) ** u= -61/85 ; tau(u)= 231/146 ; -38911*x^2 + 10729*y^2 + 57082*x*z - 38911*z^2 (30037/59109 : 80606/59109 : 1) C2b (4229443/1249657 : 406617/1249657 : 1) ** u= 61/113 ; tau(u)= 165/52 ; -1687*x^2 + 21817*y^2 + 30946*x*z - 1687*z^2 (-38355/358771 : -24572/51253 : 1) C1b (376751/397901 : 31971/397901 : 1) ** u= 61/125 ; tau(u)= 189/64 ; -4471*x^2 + 27529*y^2 + 39442*x*z - 4471*z^2 (2359/26969 : 5280/26969 : 1) C1b (70776228/243347 : -328181/18719 : 1) ** u= -64/73 ; tau(u)= 210/137 ; -33442*x^2 + 6562*y^2 + 48196*x*z - 33442*z^2 (1187/38511 : -85028/38511 : 1) C2b (-2943436/157039 : -417041/157039 : 1) ** u= -64/157 ; tau(u)= 378/221 ; -93586*x^2 + 45202*y^2 + 146980*x*z - 93586*z^2 (-122/49 : -235/49 : 1) C2b (-167815/291444 : 38045/291444 : 1) ** u= 65/97 ; tau(u)= 129/32 ; 2177*x^2 + 14593*y^2 + 20866*x*z + 2177*z^2 (-3225/19201 : -808/2743 : 1) C1b (81489/404203 : 25337/404203 : 1) ** u= -67/49 ; tau(u)= 165/116 ; -22423*x^2 + 313*y^2 + 31714*x*z - 22423*z^2 (1315/5949 : 43204/5949 : 1) C2b (-80204/111987 : -90253/111987 : 1) ** u= -67/81 ; tau(u)= 229/148 ; -39319*x^2 + 8633*y^2 + 56930*x*z - 39319*z^2 (1073/11243 : 22392/11243 : 1) C2b (825420/144217 : 94865/144217 : 1) ** u= -68/173 ; tau(u)= 414/241 ; -111538*x^2 + 55234*y^2 + 176020*x*z - 111538*z^2 (-12632/411 : 18415/411 : 1) C2b (-13451321/13482104 : 2189213/13482104 : 1) ** u= 71/153 ; tau(u)= 235/82 ; -8407*x^2 + 41777*y^2 + 60266*x*z - 8407*z^2 (10799/88427 : 14814/88427 : 1) C1b (-202136/176629 : -17329/176629 : 1) ** u= 75/26 ; tau(u)= 23/49 ; 823*x^2 - 4273*y^2 + 6154*x*z + 823*z^2 (151/2201 : -1190/2201 : 1) C1a (-120783451/4149473 : -7273201/4149473 : 1) ** u= -76/61 ; tau(u)= 198/137 ; -31762*x^2 + 1666*y^2 + 44980*x*z - 31762*z^2 (752/937 : 20403/6559 : 1) C2b (-77051/224 : -141479/1568 : 1) ** u= -76/193 ; tau(u)= 462/269 ; -138946*x^2 + 68722*y^2 + 219220*x*z - 138946*z^2 (-261804/3787507 : -5683805/3787507 : 1) C2b (-9353552/1363407 : -924269/1363407 : 1) ** u= 77/145 ; tau(u)= 213/68 ; -3319*x^2 + 36121*y^2 + 51298*x*z - 3319*z^2 (23131/361149 : 13036/361149 : 1) C1b (84069724/1259767 : 5043003/1259767 : 1) ** u= 78/41 ; tau(u)= -4/37 ; 3346*x^2 - 2722*y^2 + 6100*x*z + 3346*z^2 (692/2119 : 3065/2119 : 1) C1a (10475/808 : 825/808 : 1) ** u= 78/49 ; tau(u)= -20/29 ; 4402*x^2 - 1282*y^2 + 6484*x*z + 4402*z^2 (-2713/2880 : -3773/2880 : 1) C1a (-117696/79513 : -9791/79513 : 1) ** u= -79/85 ; tau(u)= 249/164 ; -47551*x^2 + 8209*y^2 + 68242*x*z - 47551*z^2 (55/813 : 1864/813 : 1) C2b (-353548/11409 : -52523/11409 : 1) ** u= -79/121 ; tau(u)= 321/200 ; -73759*x^2 + 23041*y^2 + 109282*x*z - 73759*z^2 (9157/1303 : -14740/1303 : 1) C2b (721583/515861 : 58503/515861 : 1) ** u= -80/149 ; tau(u)= 378/229 ; -98482*x^2 + 38002*y^2 + 149284*x*z - 98482*z^2 (56954/352381 : -501357/352381 : 1) C2b (-481004/968237 : 133343/968237 : 1) ** u= 82/37 ; tau(u)= 8/45 ; 2674*x^2 - 3986*y^2 + 6788*x*z + 2674*z^2 (-593/3074 : 1863/3074 : 1) C1a (-27612/893 : 1793/893 : 1) ** u= 84/97 ; tau(u)= 110/13 ; 6718*x^2 + 11762*y^2 + 19156*x*z + 6718*z^2 (-3779/9222 : -163/9222 : 1) C1b (172616/239767 : -21927/239767 : 1) ** u= 85/137 ; tau(u)= 189/52 ; 1817*x^2 + 30313*y^2 + 42946*x*z + 1817*z^2 (-10403/15431 : -14376/15431 : 1) C1b (-95909/293924 : 18307/293924 : 1) ** u= 86/37 ; tau(u)= 12/49 ; 2594*x^2 - 4658*y^2 + 7540*x*z + 2594*z^2 (-1679/76 : 1169/76 : 1) C1a (-1631815/959768 : 101475/959768 : 1) ** u= -89/153 ; tau(u)= 395/242 ; -109207*x^2 + 38897*y^2 + 163946*x*z - 109207*z^2 (34745/21773 : 39138/21773 : 1) C2b (46757/3591 : -4597/3591 : 1) ** u= -93/125 ; tau(u)= 343/218 ; -86399*x^2 + 22601*y^2 + 126298*x*z - 86399*z^2 (-99833/10107 : -210070/10107 : 1) C2b (1807408/1218767 : 157017/1218767 : 1) ** u= -95/149 ; tau(u)= 393/244 ; -110047*x^2 + 35377*y^2 + 163474*x*z - 110047*z^2 (11575/13669 : -16336/13669 : 1) C2b (3702684/7807463 : 647477/7807463 : 1) ** u= 96/149 ; tau(u)= 202/53 ; 3598*x^2 + 35186*y^2 + 50020*x*z + 3598*z^2 (-27331/370237 : -2440/52891 : 1) C1b (459491/333556 : -35253/333556 : 1) ** u= -97/153 ; tau(u)= 403/250 ; -115591*x^2 + 37409*y^2 + 171818*x*z - 115591*z^2 (-86399/4872529 : -8678490/4872529 : 1) C2b (81024784/2715823 : 8553631/2715823 : 1) ** u= 98/53 ; tau(u)= -8/45 ; 5554*x^2 - 3986*y^2 + 9668*x*z + 5554*z^2 (-3877/2269 : -2604/2269 : 1) C1a (-77933/32756 : -5093/32756 : 1) ** u= 100/153 ; tau(u)= 206/53 ; 4382*x^2 + 36818*y^2 + 52436*x*z + 4382*z^2 (-4189/18056 : -8175/18056 : 1) C1b (3255304/345877 : 198539/345877 : 1) ** u= 101/40 ; tau(u)= 21/61 ; 2759*x^2 - 7001*y^2 + 10642*x*z + 2759*z^2 (-4345/27411 : 11068/27411 : 1) C1a (-650459/224929 : 39177/224929 : 1) ** u= 101/117 ; tau(u)= 133/16 ; 9689*x^2 + 17177*y^2 + 27890*x*z + 9689*z^2 (-10351/25511 : -1104/25511 : 1) C1b (-18888460/1009007 : 1191595/1009007 : 1) ** u= 101/181 ; tau(u)= 261/80 ; -2599*x^2 + 55321*y^2 + 78322*x*z - 2599*z^2 (-16429/21613 : 162264/151291 : 1) C1b (-214883/52359 : -93511/366513 : 1) ** u= 102/29 ; tau(u)= 44/73 ; -254*x^2 - 8722*y^2 + 12340*x*z - 254*z^2 (28/69 : -355/483 : 1) C1a (-241949/2184 : -101513/15288 : 1) ** u= -103/169 ; tau(u)= 441/272 ; -137359*x^2 + 46513*y^2 + 205090*x*z - 137359*z^2 (-2400547/422041419 : 728349440/422041419 : 1) C2b (-1139599/195259 : 135263/195259 : 1) ** u= 110/13 ; tau(u)= 84/97 ; -6718*x^2 - 11762*y^2 + 19156*x*z - 6718*z^2 (405/914 : 179/914 : 1) C1a (-723871/192368 : -52179/192368 : 1) ** u= 112/137 ; tau(u)= 162/25 ; 11294*x^2 + 24994*y^2 + 38788*x*z + 11294*z^2 (-339/944 : -205/944 : 1) C1b (-1805633/32004 : 112753/32004 : 1) ** u= 112/185 ; tau(u)= 258/73 ; 1886*x^2 + 55906*y^2 + 79108*x*z + 1886*z^2 (-2781/3305 : 3518/3305 : 1) C1b (-100417/210876 : -13867/210876 : 1) ** u= 114/49 ; tau(u)= 16/65 ; 4546*x^2 - 8194*y^2 + 13252*x*z + 4546*z^2 (-487/150 : -161/150 : 1) C1a (-441404/137511 : -26579/137511 : 1) ** u= 115/173 ; tau(u)= 231/58 ; 6497*x^2 + 46633*y^2 + 66586*x*z + 6497*z^2 (-2498147/12621949 : 4685894/12621949 : 1) C1b (12866611/13133793 : 1159571/13133793 : 1) ** u= 116/121 ; tau(u)= 126/5 ; 13406*x^2 + 15826*y^2 + 29332*x*z + 13406*z^2 (-2603/3656 : 759/3656 : 1) C1b (-46425552/1613821 : 3135113/1613821 : 1) ** u= 119/121 ; tau(u)= 123/2 ; 14153*x^2 + 15121*y^2 + 29290*x*z + 14153*z^2 (-30593/27883 : 6974/27883 : 1) C1b (-19672093/60830537 : 3795951/60830537 : 1) ** u= 119/169 ; tau(u)= 219/50 ; 9161*x^2 + 42961*y^2 + 62122*x*z + 9161*z^2 (-10329/44687 : -14794/44687 : 1) C1b (23896/1556073 : 94493/1556073 : 1) ** u= 123/2 ; tau(u)= 119/121 ; -14153*x^2 - 15121*y^2 + 29290*x*z - 14153*z^2 (10639/8237 : 550/8237 : 1) C1a (-93728/49427 : -8787/49427 : 1) ** u= 123/74 ; tau(u)= -25/49 ; 10327*x^2 - 4177*y^2 + 15754*x*z + 10327*z^2 (7153/104007 : -172270/104007 : 1) C1a (255392/44749 : 28053/44749 : 1) ** u= -125/101 ; tau(u)= 327/226 ; -86527*x^2 + 4777*y^2 + 122554*x*z - 86527*z^2 (52389/2715229 : 11399110/2715229 : 1) C2b (59944/98791 : 18027/98791 : 1) ** u= 125/193 ; tau(u)= 261/68 ; 6377*x^2 + 58873*y^2 + 83746*x*z + 6377*z^2 (-8077/14913 : 11840/14913 : 1) C1b (-5872857/2871404 : 380813/2871404 : 1) ** u= 126/5 ; tau(u)= 116/121 ; -13406*x^2 - 15826*y^2 + 29332*x*z - 13406*z^2 (393/256 : 11/256 : 1) C1a (-1245912/46219 : 86947/46219 : 1) ** u= 127/185 ; tau(u)= 243/58 ; 9401*x^2 + 52321*y^2 + 75178*x*z + 9401*z^2 (-3791/29205 : 1802/29205 : 1) C1b (-113726344/3807919 : 6842891/3807919 : 1) ** u= 128/145 ; tau(u)= 162/17 ; 15806*x^2 + 25666*y^2 + 42628*x*z + 15806*z^2 (-3593/1595 : 36/1595 : 1) C1b (-500324/263357 : -30589/263357 : 1) ** u= -128/153 ; tau(u)= 434/281 ; -141538*x^2 + 30434*y^2 + 204740*x*z - 141538*z^2 (-3337/503 : -8016/503 : 1) C2b (30530732/297873 : 3962623/297873 : 1) ** u= 129/32 ; tau(u)= 65/97 ; -2177*x^2 - 14593*y^2 + 20866*x*z - 2177*z^2 (425295/2740183 : 720568/2740183 : 1) C1a (-1618844/136801 : -98723/136801 : 1) ** u= 133/16 ; tau(u)= 101/117 ; -9689*x^2 - 17177*y^2 + 27890*x*z - 9689*z^2 (227/499 : -120/499 : 1) C1a (231955/236636 : -17185/236636 : 1) ** u= 138/41 ; tau(u)= 56/97 ; 226*x^2 - 15682*y^2 + 22180*x*z + 226*z^2 (6472/29591 : 16855/29591 : 1) C1a (680287/136332 : -41651/136332 : 1) ** u= 138/65 ; tau(u)= 8/73 ; 8386*x^2 - 10594*y^2 + 19108*x*z + 8386*z^2 (-409/25782 : -22523/25782 : 1) C1a (-377612/316767 : -25129/316767 : 1) ** u= 141/80 ; tau(u)= -19/61 ; 12439*x^2 - 7081*y^2 + 20242*x*z + 12439*z^2 (-65107/357717 : 407008/357717 : 1) C1a (-328309/37388 : 26129/37388 : 1) ** u= 143/98 ; tau(u)= -53/45 ; 16399*x^2 - 1241*y^2 + 23258*x*z + 16399*z^2 (991/8201 : -32466/8201 : 1) C1a (-268443/127577 : -43643/127577 : 1) ** u= 145/64 ; tau(u)= 17/81 ; 7903*x^2 - 12833*y^2 + 21314*x*z + 7903*z^2 (3257/12745 : 13248/12745 : 1) C1a (-500324/263357 : -30589/263357 : 1) ** u= 148/153 ; tau(u)= 158/5 ; 21854*x^2 + 24914*y^2 + 46868*x*z + 21854*z^2 (-14902/10691 : 2157/10691 : 1) C1b (101547/103184 : -12113/103184 : 1) ** u= 150/61 ; tau(u)= 28/89 ; 6658*x^2 - 15058*y^2 + 23284*x*z + 6658*z^2 (-523/2136 : -641/2136 : 1) C1a (1712048/963767 : 137303/963767 : 1) ** u= -152/113 ; tau(u)= 378/265 ; -117346*x^2 + 2434*y^2 + 165988*x*z - 117346*z^2 (-3373/4375 : -49776/4375 : 1) C2b (71179513/255308 : 29538179/255308 : 1) ** u= -155/137 ; tau(u)= 429/292 ; -146503*x^2 + 13513*y^2 + 208066*x*z - 146503*z^2 (-18609/216985 : -759196/216985 : 1) C2b (-707461/112713 : 156347/112713 : 1) ** u= 158/5 ; tau(u)= 148/153 ; -21854*x^2 - 24914*y^2 + 46868*x*z - 21854*z^2 (1889/2668 : -327/2668 : 1) C1a (-641848/939 : 44381/939 : 1) ** u= 158/109 ; tau(u)= -60/49 ; 20162*x^2 - 1202*y^2 + 28564*x*z + 20162*z^2 (219/964 : -4627/964 : 1) C1a (1118696/145601 : 301047/145601 : 1) ** u= 161/52 ; tau(u)= 57/109 ; 2159*x^2 - 20513*y^2 + 29170*x*z + 2159*z^2 (-717/10423 : -928/10423 : 1) C1a (729713/244733 : 47259/244733 : 1) ** u= -161/153 ; tau(u)= 467/314 ; -171271*x^2 + 20897*y^2 + 244010*x*z - 171271*z^2 (-28021/1811231 : -5242746/1811231 : 1) C2b (-47931259/747224 : 8342287/747224 : 1) ** u= 162/17 ; tau(u)= 128/145 ; -15806*x^2 - 25666*y^2 + 42628*x*z - 15806*z^2 (823/985 : -576/985 : 1) C1a (-12156028/1229079 : -822181/1229079 : 1) ** u= 162/25 ; tau(u)= 112/137 ; -11294*x^2 - 24994*y^2 + 38788*x*z - 11294*z^2 (61/133 : -54/133 : 1) C1a (-129353/181996 : -15823/181996 : 1) ** u= 165/52 ; tau(u)= 61/113 ; 1687*x^2 - 21817*y^2 + 30946*x*z + 1687*z^2 (-79315/2559901 : 468196/2559901 : 1) C1a (1304412/311003 : -81443/311003 : 1) ** u= 165/116 ; tau(u)= -67/49 ; 22423*x^2 - 313*y^2 + 31714*x*z + 22423*z^2 (-579/6025 : -47656/6025 : 1) C1a (-171123/9748 : -83357/9748 : 1) ** u= -165/173 ; tau(u)= 511/338 ; -201263*x^2 + 32633*y^2 + 288346*x*z - 201263*z^2 (15/11 : -26/11 : 1) C2b (5498608/3377477 : -593691/3377477 : 1) ** u= -167/125 ; tau(u)= 417/292 ; -142639*x^2 + 3361*y^2 + 201778*x*z - 142639*z^2 (13053/73843 : -60740/10549 : 1) C2b (595921/870028 : 240327/870028 : 1) ** u= -168/169 ; tau(u)= 506/337 ; -198914*x^2 + 28898*y^2 + 284260*x*z - 198914*z^2 (-20967/7568 : -70577/7568 : 1) C2b (-253231/773116 : -152853/773116 : 1) ** u= 172/173 ; tau(u)= 174 ; 29582*x^2 + 30274*y^2 + 59860*x*z + 29582*z^2 (-287/264 : 35/264 : 1) C1b (-673360/741179 : 50565/741179 : 1) ** u= -172/193 ; tau(u)= 558/365 ; -236866*x^2 + 44914*y^2 + 340948*x*z - 236866*z^2 (60368/116509 : -193431/116509 : 1) C2b (-222533/110136 : -42941/110136 : 1) ** u= -173/125 ; tau(u)= 423/298 ; -147679*x^2 + 1321*y^2 + 208858*x*z - 147679*z^2 (4523/3463 : 33930/3463 : 1) C2b (43911/216077 : -118849/216077 : 1) ** u= 173/181 ; tau(u)= 189/8 ; 29801*x^2 + 35593*y^2 + 65650*x*z + 29801*z^2 (-26497/20221 : -7620/20221 : 1) C1b (182064452/271667775 : -5332513/54333555 : 1) ** u= 174 ; tau(u)= 172/173 ; -29582*x^2 - 30274*y^2 + 59860*x*z - 29582*z^2 (764/861 : 11/123 : 1) C1a (1187599459/38916041 : -82803153/38916041 : 1) ** u= 174/61 ; tau(u)= 52/113 ; 4738*x^2 - 22834*y^2 + 32980*x*z + 4738*z^2 (-1896/13439 : 8339/94073 : 1) C1a (69504/33119 : 34403/231833 : 1) ** u= 182/101 ; tau(u)= -20/81 ; 20002*x^2 - 12722*y^2 + 33524*x*z + 20002*z^2 (-3118/1795 : 2367/1795 : 1) C1a (296901/12671 : -24913/12671 : 1) ** u= 182/121 ; tau(u)= -60/61 ; 25682*x^2 - 3842*y^2 + 36724*x*z + 25682*z^2 (2120/8643 : 26543/8643 : 1) C1a (1291552/905689 : -316323/905689 : 1) ** u= 186/73 ; tau(u)= 40/113 ; 9058*x^2 - 23938*y^2 + 36196*x*z + 9058*z^2 (2843/6609 : -6928/6609 : 1) C1a (-86091/47108 : -5401/47108 : 1) ** u= -188/137 ; tau(u)= 462/325 ; -175906*x^2 + 2194*y^2 + 248788*x*z - 175906*z^2 (-4538/19963 : 209465/19963 : 1) C2b (102344/107399 : 43137/107399 : 1) ** u= 189/8 ; tau(u)= 173/181 ; -29801*x^2 - 35593*y^2 + 65650*x*z - 29801*z^2 (15399/22699 : 3844/22699 : 1) C1a (2393708/354807 : 154283/354807 : 1) ** u= 189/52 ; tau(u)= 85/137 ; -1817*x^2 - 30313*y^2 + 42946*x*z - 1817*z^2 (127/2671 : -228/2671 : 1) C1a (1554843/1095911 : -111773/1095911 : 1) ** u= 189/64 ; tau(u)= 61/125 ; 4471*x^2 - 27529*y^2 + 39442*x*z + 4471*z^2 (1233/10177 : -5920/10177 : 1) C1a (-1351899/280628 : 81361/280628 : 1) ** u= 198/137 ; tau(u)= -76/61 ; 31762*x^2 - 1666*y^2 + 44980*x*z + 31762*z^2 (-269/126 : 6131/882 : 1) C1a (-41576/21859 : 55667/153013 : 1) 146 >
4860673528^4+24006575631^4+38338524973^4=77618*2380651549^4 24829196449573^4+1125998409188616^4+2120615229563201^4=77618*129501786045767^4 1097790804037280567687738576400844184126589713250556259136^4+1173620728779527005833214303945431237181941396875789192879^4+1533397617848974155982614788999322095159116561720164784427^4=77618*103416731029441083350006266645433640553151312838113448377^4 2765271168790659482340937998347847577030923927590008190963^4+7373260623768372370281276070349951249452905035644948372584^4+10478891641439590099585529055059489739302970592354457672489^4=77618*663818720372729762026007715134060447572080543777776059823^4 161701663921019034749752893630103116640650929057017168264188595919118627^4+201787515734913355489907664843613355768827462463888605222380750566903248^4+254098419614456909345446074288391118235801436072757862272356937097009631^4=77618*17018128266088199222684149936607112053262291699579428786402549101262419^4 262066863719457151841025601309755964904015949971471776601588254423774568^4+746454476880161631631219592566958149327218326167276091869313755808720919^4+1771568851781139849177037901697134503174575267075411392608166305010244517^4=77618*106976205840248219483196936513659971916602725631625140308513377981782501^4 99695096107957639957387595537969873884308560924752691736614143344260503262200293263300370093232^4+108276524303197434161295814104034867458948984528310303681024094055955731533360893965924681949803^4+140668474829333449014973959015269548237717337624232758559308565418974694054550126607160708866919^4=77618*9483351696004290558594891308669751462906297017722203976275927615403566323135412887055056249131^4 342267477085573678045586840612705334679016640972075960706139248788043571346421597086521875741579923980516738284915373432442451061055184224^4+508191843686060736160190572559339263095669771609508818786111136488707746356580381349341499043174897432348996574030391142333247552712617991^4+639767712688620180907898921249575759125955650675184986141373698175551046139508090972489136275702714032346524804408619441765499632625664963^4=77618*42276628227030106163247067466998293975246673043089885411704539832559148133245451983367448683831064999838024435112711392405746843545302513^4 ...
3023^4+87563^4+113196^4=77618*7321^4 852131016296158031966426452892590082858366047^4+4697961519207353930555942026558841547355688388^4+11958860975905697097872020068000815141065119157^4=77618*720704898034267382193870892542804787729061743^4 12851783456714179158619727941207619911877209537008760902973809833207490271793826603328361512418257347531045334590929829704049901^4+47735022789602108430152186001743860399641736998355926337136056451872196869592492439012972758155794724557841577486910190675230348^4+48455971139095208951302757743424201266155076850699178533926254768535774330860087438508158231185657011282838771174677524800650327^4=77618*3429132166229808853245343365423534100060752970626190637329664469676686886570620754062288072516073873012221171642363257308035871^4 ...
35154403561^4+146558018957^4+417622337384^4=77618*25114981617^4 1076470079426759602595256484156492870585772110712680355495853147798682525345725958055928459337085851^4+2825086203938083017227497848126582029049770397786190385531807873280956192656416316261914831261786529^4+5259489172286407810339592707800613135015971798149403929514527986966499103510209008884929712637115144^4=77618*321595721937016086765094864121584161435701497679197114463279076497094173980458103460410716307385481^4 377122426518836459144264160966815679417961992784375214365475080862993836410260361408388504281631976586545417903769521352505741330880117140576494013083556468570189006635608066895364623026725282116591532105300473464339127456743097907582498507844496526698149817400504284392203823^4+500702678602101419258083286407725871501336203060486609647231419557031501648202924038180961682259176222086002207510080401767355195939920995040074781237206144940394222255026624029002077837314905021046366151992856669548415043892047971448106669189058498338574499002574201093397461^4+840420759019377793064590447757336616611112988912435477257320160174882548375830941497662203204070820376617234413416695476523723190804246818794313369708498824492800625688140155818504183350973946094054955041367861688595747035877222764596967726410109843204519101743110649070675144^4=77618*523275681500538214753369893527484570906141564052941484818847105743934992316507377711095384001385290055990023416785219136969852611028304266872482302473866865923728550079512614898321067027759417386652416027430647285737511490888809965910094907110891419454255336850346165897514 ...
24399746886559617659768249731254457^4+36192317331430645913378165231706891^4+39989299859618333617045727348964464^4=77618*2778727179597458396268768861002581^4 13137945213194224349900915151933507529064451676064484342725203200724064006597379387672168183903424094069850090868516331945409581234537519283487921045660745045042271131307036485189146409915178008659444246305599007884752606541606432275968041855935857444455790405862861979593363731149343310840720177937498463187969833^4+17381645336693369570978245043342837090873050706980885408802027465514768469370396707248333538740440834808302787123446421140866423633079669409253167664980604127432066418823289743709698863130993074348162311807018258727303417761427473020371302173541216012908649339284778513870269887026469510079474367866566419523214792^4+40947547119039688085714962287038412315923225426753460764392754616840110422812864771686433330583032129396739211900377139454443218272791631027315520571292873699964561797943882310030701370947670570440066522791198927395629447107075289473014220610534540459266212051832527424486641479472784527451108990051324827719953571^4=77618*2479220382006238209098614722375269019851660892905174587152029908925407065145141499020762353060828719691971143925594076707066272231864958244464039208159679744407312562159267077327229482509273196753257945096500865629967714653532928063037166827457094552719808580139515253082414634030535823511962860899329460567379513^4 ...
119522180733957213038997^4+182950362081371688453601^4+186303932449286322802264^4=77618*13435407886702380004159^4 6571617430754375803694417^4+86682826729908619184872376^4+257157492294074959777832581^4=77618*15456151287272505939431151^4 35417305917314159649133293189979012855498045827351^4+91112947443061534660598394400956722315555334413576^4+135187120101279497120825502560714592897003831522587^4=77618*8496403643993648400685395639938832059048097209861^4 43928220929113849481784158348472486252453767813031653549^4+14464356266689502717825747915453503555468016771381660673032^4+51614891884303944603786735521679303742713328372002836257497^4=77618*3097076705213009193024538576631890711767604511444889456103^4 2505513424190567916237619407025657688377596015938626320209332609007073557834971795393596704991264452710504^4+3005503608350806966402446610297810118057879594161800102935399633202334056147496436635006409567203387238669^4+56411397349062020545253581099925566868977475487746139746484007036363299802296342899070408731946115517622287^4=77618*3379695262748419996995385524716573046370732095966746467880038076505678959168726250279467680077462497086989^4 2518300794775259843228825832121895891161611739444642054802326310952739564301653380032747696208525138440019128940536192043^4+4259350946501526688334366445783510074283196342290022596358785689922046856516895074466110127030079269167514377560628643256^4+4502728830365662773041693535490022166886244521416078173559352903137932675498612913903281650974852848068377588477517136359^4=77618*316657903244139193852997049159405054712297313671203125649542999175835541430716921534357944398373680268225723331158978229^4 82171785282936123346420466783202024112123755246330944168491498081348889141142928369297426843057851653640287338234129066078990165827010343160712540391744684306542259163465800253498794828072^4+377346249275262248146522125654743632498050106384724127122514052137969962890014853081022133467685612123799459619840541249280543662866625631971022462516455580937472972085824511629060630404921^4+6914001544810528532073793779829722256504311587392885837915530968837970906740083876136564178590213374564289927048942646934209410234116617750366980004826531384515311429078347726178719081213131^4=77618*414228356492555977304442423100158372224622412415793991261815901692132025056977151046381048520575512336941548739257721742311444219296103676709328945792324361956288495954341255438280114256821^4 633651648791955824324245315098628996160481140986369136646774185221649622888491288757901310420490201549190145084507014608312994996028237887063887785705495710286941315909276355476265024234451247^4+2037191407205291317758137395948859466231563919379633023480676419060852846360454581249175242942106319319594538080239351280623575145327890753754949802864896305433176382479614452736944344245404568^4+3518100961996003080191972245927903841376899154424378539700297308038369677455162317889106686452933674918070323896096845925991292652584688122109893414884757343064504435464178731990733115784759699^4=77618*216515416319974615132581745388430574644680657028340338434434172059928454483006229057241789457537491288108995776613306582163195748990674158222339971364601078868426738853690039934562046674623597^4 419039796435295764666922966350348545589801509046446692141745158849016890287063192166122870309706342952379669494953773091153665766760044022917488136078676412027623887444242226339002055168368523066473^4+1233206094913009161720759333149616371789238214912261953527344952411394334574835645494821227338646268363284611539051635196460686338882101926777096301389811694030374530783869138089723327274052326724904^4+2010125095886631966081730609119770752726775451812020205655022591357945949481371312136257365259883026161898719401690766573461915148766133299882882884152805271884163841910064238023789140314912993266237^4=77618*124536375167556505386953683775298522983469727228717903628681784950783847188388302840694877331957964598523534882478192286849096875928715072858519286989523064368339995464764099898035695868089434390903^4 2458035184157475350339799856302518706366878173909655671911059618048830722678985813464628789881855373710317752962158803294509567429127495878560341565679202375964426254666428151871186961104255614239140829157727227^4+6817255509803577860184435600221769662783372910129157390453659287186257925995266034760072148214031308462938285186687582964479603957307239202484418261252941267106619822021231610531889621427783668809012253345024424^4+10670540832859794344629317543908990352848234332446781114873659312247058931011161187225738965685346585346224563437536094392620725398725649271467027088947391621198516038678320649403997008950443619681310174003785143^4=77618*664796444049700457054977693886907573889696672451113566117581106172185467655007344884566713543135710905584896342278785998890886033900717657789980140993471294279078597272285786625990244787344183495218060426919557^4 115953927636711453100819181243251881765601302426756980254459298734348475171548916294837268698265383272109253627988359183370729811947670078931951632609546104982167897257999652108398597434658967138105632574313901163^4+265335094758898496390120575275137820204977175202593793699446617659178977104573498516212178379705950213519845281806058426283147626342653076137056304332680797119979712090888801219366075687152006040410492700185834488^4+360596767869372757717453549700802147816164762856702495601742247862797135039788823826113461203331382660821138169928958275093462825351827473039952224212226782414615452847334170557348485352388018855883687166891128231^4=77618*23085407146108051938656267986963500191575031262384790238055329905213793423490188127629033339901255301359136034120630514341822030803644299413298543387131282403937976597146464587554698057835371069278797200849672757^4 223434716730273440454805447832963364303231802325219892555037997032877453556140483585855545855128389131683505511991867020049094370295515757565684478549123449455599695099181658871296521713189985361938783057324979785214877533952935042164369^4+294246411529149242589264877607052757648707246849560114826024458223368926657050404570863863073904515412478008299461223652629178175680760146693760099410363592241203469006581722993820696780903605636292280035464206706654956428585788871915781^4+322195597507563852375639607795526040948337867901210712886288463760795840918138618684173978617297289386185576484605901774907287440091548581924015578527294839817287734354689114566168567786440252829712871616754422366638744983307641045989032^4=77618*22742743190195772167182664914596383724936623203776939603815628645262847704795778537829852673998507782465371905440311153095884565023543381503083227446185597896812851630864703167416531563299309699564201479792644471968379974570629953430799^4 2068625968192301978451116342563070578929231739606869873714760949969520456559718550568438596684926851256682276748521777933671183886179321813019869009499263973009070004765539876216885418149990501521763034256557303010624407502502642091031985266634397662387079128883^4+2901437031608914921452354454202412243583912631019298799034573221446813222920896125079125912958080314006008593337881356183105888992248212255036994981216772615414336301458299955827518187120609912207372868307206399377794812271137924171177308951689271520719865325327^4+3081439464531789613260227250609079036349418009406667379938667873450496984845872207614663934306465177467359450019362858344802945598743843740201547078077036000796070870171171564665525346128925848199837462492319073447172006030632647617669533139958910362504142556616^4=77618*219244546744495253694628739468302699047983725904515174833845696361980166977906827426311450057312295276570407721223355949212134232636211825783026894329542035660805856614982684351638434038551267574123498034603601654896250454185142586416372012316878596010656156013^4 930689698125005955131198922816503097071927618917151280049805864582342407350721522437994146045773506132237682365221918670078434397744398911350817379467321458605900681516331982930375806585025221080541019534044458376022633865959323079069320513172968482618437458206918484270492824440578763158043596323861381^4+6684908516496286502448956280290592970808610642629589666327708536180576120852241954113158504351640562728918532571019823137787706622855803939942601467152117374629016249784324925085454104072843992100948404653997740703369826104930532016414997182706526517203659667639757059375387103777836749723866507034471112^4+16957424472585337075819336882329709287974717599644797198689758808116476169410441280345971580606882543455293130761942810259992984721979864423428233154580234497037129937205106809940440783059800230557015304178417023149981704258813866521585728740979413046757577035006268311725156185426191423423179893100644689^4=77618*1022024441708240339245059598623573754933379090446407386525804848401582546253597654537721114450639589185407873787122223643141888739105296320227656134781053593920123489099177670225282257194882342074056753735622172786983458693919048826856048775768740121933907534422901052189348157101360474538980367669531759^4 ...
50704^4+298617^4+3012059^4=77618*180461^4 4228639227871331419998005135169518542809789613340399558477381^4+8949540730362524474919930925110422225944889540497380314591576^4+59698729612254485501606048750122783279688948829180484357055449^4=77618*3577107826659936355129770368627268051240397515484019546150163^4 1062958918505961660985643853103538440628465119898997018105262019443513740443579557568284920503300281718946430995829811262427285839489227391639325680471804288407179155443464^4+1195993185974240773937755629972333061755878640300532567260543103085825746180899366215720974593941833433511624582367499657884994301032142988026551514694574045727958511542737^4+7817621246001328643781605992866550282708814159877632388875065607672453741050307899480361252142478344318700321316182585837342355503471075694428923942672924909576505709989243^4=77618*468468675268231839500311929098641901445415124061360875166755983454015876841992969562442637245486597788715671212724906860184186989295959585856490065896426878758516652449617^4 2178957401185967853717319772536407336984535597661815576696324961177938255097349373161604084542445217114797836206313940667468615192260511396008414355985704825082068205155471698507558479314696904985378415112671770166856998191462133986336924862755390549925586607226382355632695390472688704033768747625550134560768671931081014368579175927392^4+3202946614131794312765901263607353894986345680968405354483377442425629808156840136992402881166026489862034146067899756749497163374974474266259431669882616250222478415056218211309448031451402748849774131786580150123198196253909657728306078993512886063755083759047263677579840915571469306884930325161681535969289554507798617683295685439831^4+20292529054635899788706424840491960937452810320672662180080341118426853061335247518688829530731504645440369642472683782483003872101108153302804727933272414254674594386706391261160491356721309941751655695506154698212388812969313006810453544826290935350684081004702981810771440474328371025954885080460546195815966723456516039949100655203611^4=77618*1215982583531121481692631989108068342407239522070819065015136179858552725447928208231624016182366711658756419723979204304396975594620050435627200437523096453890666028646526524264438795536302389097453963530461823436329004554801851381247950525908713451426192506383747987759908108769844707664711554804530470597056284660756851661628709853029^4 ...
13326403809907618517817680090200953809435846281^4+32026787533992509891156906069302564257768645968^4+55732028677669693002986696873086945428215806053^4=77618*3429034056892859727938603545152365496711485867^4 3000877991322135514798105249629201985138751773017952556669754119460277474109495889326410696220594868928103108964713523319986640184584122999695077034843388666332506074543405532292636849093781982866464725020343188433347293018965004287565842396490873275710481166927507531145463586075315706477348722353351975051643516112458962504483374389435758184745984019356656052296352598926834978553707240408612156801676158482973558400324639^4+7325812355542820055840572634631263026150273085467449976433540825012378088937029644933812010125486178837436285090978231876967773306282602110577924587445306769753939751950342021041872757718466473549702575385206465972155350302076497740199388545285387185260582197418115877349194737956219042754776314732123597042159526141276514716916406806776778692638238238796344089418361566509137024522607844610500810233541851982912324821051304^4+12792160052745598886205768062955851892875570153580976012594871311312668413013641013790215573448961998316815799155192238309400373862101046805559201870336266243124872086265912148569025901103551041921839630520086659569207425526774954936905276518091086984958102937661133503067741837663792637935833767389134929412744075914185904421248500912873661429606151977855223770940587927039769424983488863510000133303557443281903240362570069^4=77618*786758569802564587971990919798760303858430635857456611542605307334903929193935296709870891061992208030351125688529513595145097947670913747623803435358313714893244855190607334902859601700385705184325773779368541313198051700267680323602880902253472488120659619763170478849558058256755778137907411971481089887074810436269996075839466220401395052732754941907746658334339714470791419345249363302292556934589478818724825315589343^4 ...
| Last Update: 2025.11.16 |
| H.Nakao |
[Homeに戻る]
[一覧に戻る]