Homeに戻る  一覧に戻る 

Rational Points on Elliptic Curve: x^4+z^4=97y^2


[2005.08.20]x^4+z^4=97y^2の有理点


Diophantus方程式
     C: x4+z4=97y2
で定義される楕円曲線Cの有理点(x:y:z)を求める。
ただし、(x,y,z)は(0,0,0)以外の3組の有理数とし、0でない任意の有理数dに対して、
     (x, y, z)〜(dx, d2y, dz)
とする。〜はQ3-{(0,0,0)}上の同値関係である。
Q3-{(0,0,0)}/〜の元(x:y:z)を、
     (x:y:z) = {(dx,d2y,dz) | d ∈ Q-{0}}
とする。

■一般に、正有理数a,bに対して、正有理数cを
     c = a4+b4 ------- (*)
とする。
このとき、楕円曲線
     Cc: x4+z4=cy2
は、楕円曲線
     Ec: y2 = x3-4c2x
Q-isomorphicである。

楕円曲線Ccは、双有理変換φa,b
     u = (a2z2+b2x2+cy)/(ax-bz)2, ------ (1)
     v = (az3+bx3+(a3z+b3x)y)/(ax-bz)3 ----- (2)
[逆変換φa,b-1は、
     x = {a3u+bcv+ab2}w ----- (3)
     y = {cu3+3a2b2u2+2ab(a4-b4)v-a2b2}w2 ----- (4)
     z = -{b3u-acv+a2b}w ----- (5)
ただし、wは0でない任意の有理数とする。
]
によって、楕円曲線
     E'c: 2cv2 = u3-u
に写される。また、楕円曲線E'cは、双有理変換φa,b-1によって、楕円曲線Ccに写される。

[証明]
(x:y:z)を楕円曲線Ccの有理点とすると、
     x4+z4-cy2 = 0
である。(u,v)=φa,b(x:y:z)とすると、(*),(1),(2)より、
     u3-u-2cv2 = -(3a4b2+b6x2-4a3b3xz+(a8+2a4b4+b8)y+(a6+3a2b4)z2)(x4-(a4+b4)y2+z4)/(ax-bz)6 = -(b2(3a4+b4)x2-4a3b3xz+c2y+a2(a4+3b4)z2)(x4-cy2+z4)/(ax-bz)6 = 0
となる。
よって、(u,v)は楕円曲線Ecの有理点である。

[asirによる計算]
[0] U=((a*z)^2+(b*x)^2+(a^4+b^4)*y)/(a*x-b*z)^2;
(b^2*x^2+(a^4+b^4)*y+a^2*z^2)/(a^2*x^2-2*b*a*z*x+b^2*z^2)
[1] V=(a*z^3+b*x^3+(a^3*z+b^3*x)*y)/(a*x-b*z)^3;
(b*x^3+b^3*y*x+a^3*z*y+a*z^3)/(a^3*x^3-3*b*a^2*z*x^2+3*b^2*a*z^2*x-b^3*z^3)
[2] F=U^3-U-2*(a^4+b^4)*V^2;
((-3*b^2*a^12-b^6*a^8)*x^14+(28*b^3*a^11+8*b^7*a^7)*z*x^13+((-a^16-2*b^4*a^12-b^8*a^8)*y+(-a^14-119*b^4*a^10-28*b^8*a^6)*z^2)*x^12+((8*b*a^15+16*b^5*a^11+8*b^9*a^7)*z*y+(8*b*a^13+304*b^5*a^9+56*b^9*a^5)*z^3)*x^11+((3*b^2*a^16+4*b^6*a^12+b^10*a^8)*y^2+(-28*b^2*a^14-56*b^6*a^10-28*b^10*a^6)*z^2*y+(-31*b^2*a^12-519*b^6*a^8-70*b^10*a^4)*z^4)*x^10+((-28*b^3*a^15-36*b^7*a^11-8*b^11*a^7)*z*y^2+(56*b^3*a^13+112*b^7*a^9+56*b^11*a^5)*z^3*y+(84*b^3*a^11+624*b^7*a^7+56*b^11*a^3)*z^5)*x^9+((a^20+3*b^4*a^16+3*b^8*a^12+b^12*a^8)*y^3+(a^18+120*b^4*a^14+147*b^8*a^10+28*b^12*a^6)*z^2*y^2+(-a^16-72*b^4*a^12-141*b^8*a^8-70*b^12*a^4)*z^4*y+(-a^14-189*b^4*a^10-546*b^8*a^6-28*b^12*a^2)*z^6)*x^8+((-8*b*a^19-24*b^5*a^15-24*b^9*a^11-8*b^13*a^7)*z*y^3+(-8*b*a^17-312*b^5*a^13-360*b^9*a^9-56*b^13*a^5)*z^3*y^2+(8*b*a^15+72*b^5*a^11+120*b^9*a^7+56*b^13*a^3)*z^5*y+(8*b*a^13+360*b^5*a^9+360*b^9*a^5+8*b^13*a)*z^7)*x^7+((28*b^2*a^18+84*b^6*a^14+84*b^10*a^10+28*b^14*a^6)*z^2*y^3+(28*b^2*a^16+546*b^6*a^12+588*b^10*a^8+70*b^14*a^4)*z^4*y^2+(-28*b^2*a^14-84*b^6*a^10-84*b^10*a^6-28*b^14*a^2)*z^6*y+(-28*b^2*a^12-546*b^6*a^8-189*b^10*a^4-b^14)*z^8)*x^6+((-56*b^3*a^17-168*b^7*a^13-168*b^11*a^9-56*b^15*a^5)*z^3*y^3+(-56*b^3*a^15-672*b^7*a^11-672*b^11*a^7-56*b^15*a^3)*z^5*y^2+(56*b^3*a^13+120*b^7*a^9+72*b^11*a^5+8*b^15*a)*z^7*y+(56*b^3*a^11+624*b^7*a^7+84*b^11*a^3)*z^9)*x^5+((70*b^4*a^16+210*b^8*a^12+210*b^12*a^8+70*b^16*a^4)*z^4*y^3+(70*b^4*a^14+588*b^8*a^10+546*b^12*a^6+28*b^16*a^2)*z^6*y^2+(-70*b^4*a^12-141*b^8*a^8-72*b^12*a^4-b^16)*z^8*y+(-70*b^4*a^10-519*b^8*a^6-31*b^12*a^2)*z^10)*x^4+((-56*b^5*a^15-168*b^9*a^11-168*b^13*a^7-56*b^17*a^3)*z^5*y^3+(-56*b^5*a^13-360*b^9*a^9-312*b^13*a^5-8*b^17*a)*z^7*y^2+(56*b^5*a^11+112*b^9*a^7+56*b^13*a^3)*z^9*y+(56*b^5*a^9+304*b^9*a^5+8*b^13*a)*z^11)*x^3+((28*b^6*a^14+84*b^10*a^10+84*b^14*a^6+28*b^18*a^2)*z^6*y^3+(28*b^6*a^12+147*b^10*a^8+120*b^14*a^4+b^18)*z^8*y^2+(-28*b^6*a^10-56*b^10*a^6-28*b^14*a^2)*z^10*y+(-28*b^6*a^8-119*b^10*a^4-b^14)*z^12)*x^2+((-8*b^7*a^13-24*b^11*a^9-24*b^15*a^5-8*b^19*a)*z^7*y^3+(-8*b^7*a^11-36*b^11*a^7-28*b^15*a^3)*z^9*y^2+(8*b^7*a^9+16*b^11*a^5+8*b^15*a)*z^11*y+(8*b^7*a^7+28*b^11*a^3)*z^13)*x+(b^8*a^12+3*b^12*a^8+3*b^16*a^4+b^20)*z^8*y^3+(b^8*a^10+4*b^12*a^6+3*b^16*a^2)*z^10*y^2+(-b^8*a^8-2*b^12*a^4-b^16)*z^12*y+(-b^8*a^6-3*b^12*a^2)*z^14)/(a^14*x^14-14*b*a^13*z*x^13+91*b^2*a^12*z^2*x^12-364*b^3*a^11*z^3*x^11+1001*b^4*a^10*z^4*x^10-2002*b^5*a^9*z^5*x^9+3003*b^6*a^8*z^6*x^8-3432*b^7*a^7*z^7*x^7+3003*b^8*a^6*z^8*x^6-2002*b^9*a^5*z^9*x^5+1001*b^10*a^4*z^10*x^4-364*b^11*a^3*z^11*x^3+91*b^12*a^2*z^12*x^2-14*b^13*a*z^13*x+b^14*z^14)
[3] F1=nm(F);
(-3*b^2*a^12-b^6*a^8)*x^14+(28*b^3*a^11+8*b^7*a^7)*z*x^13+((-a^16-2*b^4*a^12-b^8*a^8)*y+(-a^14-119*b^4*a^10-28*b^8*a^6)*z^2)*x^12+((8*b*a^15+16*b^5*a^11+8*b^9*a^7)*z*y+(8*b*a^13+304*b^5*a^9+56*b^9*a^5)*z^3)*x^11+((3*b^2*a^16+4*b^6*a^12+b^10*a^8)*y^2+(-28*b^2*a^14-56*b^6*a^10-28*b^10*a^6)*z^2*y+(-31*b^2*a^12-519*b^6*a^8-70*b^10*a^4)*z^4)*x^10+((-28*b^3*a^15-36*b^7*a^11-8*b^11*a^7)*z*y^2+(56*b^3*a^13+112*b^7*a^9+56*b^11*a^5)*z^3*y+(84*b^3*a^11+624*b^7*a^7+56*b^11*a^3)*z^5)*x^9+((a^20+3*b^4*a^16+3*b^8*a^12+b^12*a^8)*y^3+(a^18+120*b^4*a^14+147*b^8*a^10+28*b^12*a^6)*z^2*y^2+(-a^16-72*b^4*a^12-141*b^8*a^8-70*b^12*a^4)*z^4*y+(-a^14-189*b^4*a^10-546*b^8*a^6-28*b^12*a^2)*z^6)*x^8+((-8*b*a^19-24*b^5*a^15-24*b^9*a^11-8*b^13*a^7)*z*y^3+(-8*b*a^17-312*b^5*a^13-360*b^9*a^9-56*b^13*a^5)*z^3*y^2+(8*b*a^15+72*b^5*a^11+120*b^9*a^7+56*b^13*a^3)*z^5*y+(8*b*a^13+360*b^5*a^9+360*b^9*a^5+8*b^13*a)*z^7)*x^7+((28*b^2*a^18+84*b^6*a^14+84*b^10*a^10+28*b^14*a^6)*z^2*y^3+(28*b^2*a^16+546*b^6*a^12+588*b^10*a^8+70*b^14*a^4)*z^4*y^2+(-28*b^2*a^14-84*b^6*a^10-84*b^10*a^6-28*b^14*a^2)*z^6*y+(-28*b^2*a^12-546*b^6*a^8-189*b^10*a^4-b^14)*z^8)*x^6+((-56*b^3*a^17-168*b^7*a^13-168*b^11*a^9-56*b^15*a^5)*z^3*y^3+(-56*b^3*a^15-672*b^7*a^11-672*b^11*a^7-56*b^15*a^3)*z^5*y^2+(56*b^3*a^13+120*b^7*a^9+72*b^11*a^5+8*b^15*a)*z^7*y+(56*b^3*a^11+624*b^7*a^7+84*b^11*a^3)*z^9)*x^5+((70*b^4*a^16+210*b^8*a^12+210*b^12*a^8+70*b^16*a^4)*z^4*y^3+(70*b^4*a^14+588*b^8*a^10+546*b^12*a^6+28*b^16*a^2)*z^6*y^2+(-70*b^4*a^12-141*b^8*a^8-72*b^12*a^4-b^16)*z^8*y+(-70*b^4*a^10-519*b^8*a^6-31*b^12*a^2)*z^10)*x^4+((-56*b^5*a^15-168*b^9*a^11-168*b^13*a^7-56*b^17*a^3)*z^5*y^3+(-56*b^5*a^13-360*b^9*a^9-312*b^13*a^5-8*b^17*a)*z^7*y^2+(56*b^5*a^11+112*b^9*a^7+56*b^13*a^3)*z^9*y+(56*b^5*a^9+304*b^9*a^5+8*b^13*a)*z^11)*x^3+((28*b^6*a^14+84*b^10*a^10+84*b^14*a^6+28*b^18*a^2)*z^6*y^3+(28*b^6*a^12+147*b^10*a^8+120*b^14*a^4+b^18)*z^8*y^2+(-28*b^6*a^10-56*b^10*a^6-28*b^14*a^2)*z^10*y+(-28*b^6*a^8-119*b^10*a^4-b^14)*z^12)*x^2+((-8*b^7*a^13-24*b^11*a^9-24*b^15*a^5-8*b^19*a)*z^7*y^3+(-8*b^7*a^11-36*b^11*a^7-28*b^15*a^3)*z^9*y^2+(8*b^7*a^9+16*b^11*a^5+8*b^15*a)*z^11*y+(8*b^7*a^7+28*b^11*a^3)*z^13)*x+(b^8*a^12+3*b^12*a^8+3*b^16*a^4+b^20)*z^8*y^3+(b^8*a^10+4*b^12*a^6+3*b^16*a^2)*z^10*y^2+(-b^8*a^8-2*b^12*a^4-b^16)*z^12*y+(-b^8*a^6-3*b^12*a^2)*z^14
[4] F2=dn(F);
a^14*x^14-14*b*a^13*z*x^13+91*b^2*a^12*z^2*x^12-364*b^3*a^11*z^3*x^11+1001*b^4*a^10*z^4*x^10-2002*b^5*a^9*z^5*x^9+3003*b^6*a^8*z^6*x^8-3432*b^7*a^7*z^7*x^7+3003*b^8*a^6*z^8*x^6-2002*b^9*a^5*z^9*x^5+1001*b^10*a^4*z^10*x^4-364*b^11*a^3*z^11*x^3+91*b^12*a^2*z^12*x^2-14*b^13*a*z^13*x+b^14*z^14
[5] fctr(F1);
[[-1,1],[a*x-b*z,8],[(3*b^2*a^4+b^6)*x^2-4*b^3*a^3*z*x+(a^8+2*b^4*a^4+b^8)*y+(a^6+3*b^4*a^2)*z^2,1],[x^4+(-a^4-b^4)*y^2+z^4,1]]
[6] fctr(F2);
[[1,1],[a*x-b*z,14]]

同様に、(u,v)を楕円曲線E'cの有理点とすると、
     u3-u-2cv2 = 0
である。
(x:y:z)=φa,b-1(u,v)とすると、(*),(3),(4),(5)より、
     x4+z4-cy2 = x4+z4-(a4+b4)y2 = -w4((a4+b4)u+2a2b2)3(u3-u-2(a4+b4)v2)
         = -w4(cu+2a2b2)3(u3-u-2cv2) = 0
となる。
よって、(x:y:z)は楕円曲線Ccの有理点である。

[asirによる計算]
[7] X=(a^3*u+b*(a^4+b^4)*v+a*b^2)*w;
a^3*w*u+(b*a^4+b^5)*w*v+b^2*a*w
[8] Y=((a^4+b^4)*u^3+3*a^2*b^2*u^2-(a^4+b^4)^2*v^2+2*a*b*(a^4-b^4)*v-a^2*b^2)*w^2;
(a^4+b^4)*w^2*u^3+3*b^2*a^2*w^2*u^2+(-a^8-2*b^4*a^4-b^8)*w^2*v^2+(2*b*a^5-2*b^5*a)*w^2*v-b^2*a^2*w^2
[9] Z=-(b^3*u-a*(a^4+b^4)*v+a^2*b)*w;
-b^3*w*u+(a^5+b^4*a)*w*v-b*a^2*w
[10] G=X^4+Z^4-(a^4+b^4)*Y^2;
(-a^12-3*b^4*a^8-3*b^8*a^4-b^12)*w^4*u^6+(-6*b^2*a^10-12*b^6*a^6-6*b^10*a^2)*w^4*u^5+(a^12-9*b^4*a^8-9*b^8*a^4+b^12)*w^4*u^4+((2*a^16+8*b^4*a^12+12*b^8*a^8+8*b^12*a^4+2*b^16)*w^4*v^2+(6*b^2*a^10+4*b^6*a^6+6*b^10*a^2)*w^4)*u^3+((12*b^2*a^14+36*b^6*a^10+36*b^10*a^6+12*b^14*a^2)*w^4*v^2+(12*b^4*a^8+12*b^8*a^4)*w^4)*u^2+((24*b^4*a^12+48*b^8*a^8+24*b^12*a^4)*w^4*v^2+8*b^6*a^6*w^4)*u+(16*b^6*a^10+16*b^10*a^6)*w^4*v^2
[11] fctr(G);
[[-1,1],[w,4],[(a^4+b^4)*u+2*b^2*a^2,3],[u^3-u+(-2*a^4-2*b^4)*v^2,1]]

最後に、楕円曲線E'cが楕円曲線EcQ-isomorphicであることは容易に分かる。

■24+34=97より、楕円曲線C: x4+z4=97y2は楕円曲線
     E: y2=x3-37636x
Q-isomorphicである。

楕円曲線Cから楕円曲線Eへの双有理変換φは、
     u = 34(4x2+97t_8z2)/(2x-3z)2,
     v = 37636(2x3+8xy+27z3)/(2x-3z)3
[逆変換φ-1は、
     x = 388(16u+3v+6984)w,
     y = 150544(2u3+432u2-v2-3120v-5419584)w2,
     z = -776(27y-v+2328)w
ただし、wは0でない任意の有理数である。
]
である。

[pari/gpによる計算]
gp>  read("x3m37636x.gp")
time = 102 ms.
gp>  f2(f1([x,y,z]))
time = 46 ms.
%1 = [(776*x^2 + (18818*y + 1746*z^2))/(4*x^2 - 12*z*x + 9*z^2), (75272*x^3 + 301088*y*x + (1016172*z*y + 112908*z^3))/(8*x^3 - 36*z*x^2 + 54*z^2*x - 27*z^3)]
gp>  g1(g2([u,v]))
time = 9 ms.
%2 = [6208*u + (1164*v + 2709792), 301088*u^3 + 65035008*u^2 + (-150544*v^2 - 469697280*v - 815885853696), -20952*u + (776*v - 1806528)]
[asirによる計算]
[0] fctr(776*x^2 + (18818*y + 1746*z^2));
[[194,1],[4*x^2+97*y+9*z^2,1]]
[1] fctr(4*x^2 - 12*z*x + 9*z^2);
[[1,1],[2*x-3*z,2]]
[2] fctr(75272*x^3 + 301088*y*x + (1016172*z*y + 112908*z^3));
[[37636,1],[2*x^3+8*y*x+27*z*y+3*z^3,1]]
[3] fctr((8*x^3 - 36*z*x^2 + 54*z^2*x - 27*z^3));
[[1,1],[2*x-3*z,3]]
[4] fctr(6208*u + (1164*v + 2709792));
[[388,1],[16*u+3*v+6984,1]]
[5] fctr(301088*u^3 + 65035008*u^2 + (-150544*v^2 - 469697280*v - 815885853696));
[[150544,1],[2*u^3+432*u^2-v^2-3120*v-5419584,1]]
[6] fctr(-20952*u + (776*v - 1806528));         
[[-776,1],[27*u-v+2328,1]]

■mwrankによって、E(Q)のrankは2であり、その生成元は(10658/49, -497568/343),(1874137/4356, 2290047101/287496)であることが分かる。
これより、194=2*97は合同数である。

[mwrankによる計算]
bash-2.05a$ mwrank
Program mwrank: uses 2-descent (via 2-isogeny if possible) to
determine the rank of an elliptic curve E over Q, and list a
set of points which generate E(Q) modulo 2E(Q).
and finally saturate to obtain generating points on the curve.
For more details see the file mwrank.doc.
For details of algorithms see the author's book.

Please acknowledge use of this program in published work, 
and send problems to John.Cremona@nottingham.ac.uk.

Version compiled on Apr 15 2005 at 07:36:24 by GCC 3.3.3 (NetBSD nb3 20040520)
using base arithmetic option LiDIA_ALL (LiDIA bigints and multiprecision floating point)
Using LiDIA multiprecision floating point with 15 decimal places.
Enter curve: [0,0,0,-37636,0]

Curve [0,0,0,-37636,0] :    
3 points of order 2:
[0 : 0 : 1], [194 : 0 : 1], [-194 : 0 : 1]

****************************
* Using 2-isogeny number 1 *
****************************

Using 2-isogenous curve [0,0,0,150544,0]
-------------------------------------------------------
First step, determining 1st descent Selmer groups
-------------------------------------------------------
After first local descent, rank bound = 2
rk(S^{phi}(E'))=      3
rk(S^{phi'}(E))=       1

-------------------------------------------------------
Second step, determining 2nd descent Selmer groups
-------------------------------------------------------
After second local descent, rank bound = 2
rk(phi'(S^{2}(E)))=  3
rk(phi(S^{2}(E')))=    1
rk(S^{2}(E))=  4
rk(S^{2}(E'))= 3

****************************
* Using 2-isogeny number 2 *
****************************

Using 2-isogenous curve [0,-1164,0,37636,0]
-------------------------------------------------------
First step, determining 1st descent Selmer groups
-------------------------------------------------------
After first local descent, rank bound = 2
rk(S^{phi}(E'))=        3
rk(S^{phi'}(E))=       1

-------------------------------------------------------
Second step, determining 2nd descent Selmer groups
-------------------------------------------------------
After second local descent, rank bound = 2
rk(phi'(S^{2}(E)))=  3
rk(phi(S^{2}(E')))=    1
rk(S^{2}(E))=  4
rk(S^{2}(E'))= 3

****************************
* Using 2-isogeny number 3 *
****************************

Using 2-isogenous curve [0,1164,0,37636,0]
-------------------------------------------------------
First step, determining 1st descent Selmer groups
-------------------------------------------------------
After first local descent, rank bound = 2
rk(S^{phi}(E'))= 2
rk(S^{phi'}(E))=       2

-------------------------------------------------------
Second step, determining 2nd descent Selmer groups
-------------------------------------------------------
After second local descent, rank bound = 2
rk(phi'(S^{2}(E)))=  2
rk(phi(S^{2}(E')))=    2
rk(S^{2}(E))=  4
rk(S^{2}(E'))= 3

After second local descent, combined upper bound on rank = 2
Third step, determining E(Q)/phi(E'(Q)) and E'(Q)/phi'(E(Q))
-------------------------------------------------------
1. E(Q)/phi(E'(Q))
-------------------------------------------------------
(c,d)  =(-582,75272)
(c',d')=(1164,37636)
First stage (no second descent yet)...
(97,0,-582,0,776):  (x:y:z) = (2:0:1)
    Curve E         Point [388 : 0 : 1], height = 0
After first global descent, this component of the rank = 2
-------------------------------------------------------
2. E'(Q)/phi'(E(Q))
-------------------------------------------------------
First stage (no second descent yet)...
(2,0,1164,0,18818):  (x:y:z) = (7:284:1)
        Curve E'        Point [98 : 3976 : 1], height = 4.27546911926715
        Curve E         Point [141148 : -497568 : 343], height = 8.55093823853429
(97,0,1164,0,388):  (x:y:z) = (11:1649:3)
      Curve E'        Point [35211 : 1759483 : 27], height = 5.02380690960883
 Curve E         Point [179467266 : 2290047101 : 287496], height = 10.0476138192177
After first global descent, this component of the rank = 2

-------------------------------------------------------
Summary of results:
-------------------------------------------------------
   rank(E) = 2
     #E(Q)/2E(Q) = 16

Information on III(E/Q):
        #III(E/Q)[phi']    = 1
  #III(E/Q)[2]       = 1

Information on III(E'/Q):
 #phi'(III(E/Q)[2]) = 1
  #III(E'/Q)[phi]    = 1
  #III(E'/Q)[2]      = 1

-------------------------------------------------------

List of points on E = [0,0,0,-37636,0]:

I.  Points on E mod phi(E')
--none (modulo torsion).


II. Points on phi(E') mod 2E
Point [74606 : -497568 : 343], height = 8.55093823853429
Point [123693042 : 2290047101 : 287496], height = 10.0476138192177
-------------------------------------------------------
Computing full set of 4 coset representatives for
2E(Q) in E(Q) (modulo torsion), and sorting into height order....done.

Rank = 2

Regulator (before saturation) = 38.6439672225803
Saturating...finished saturation (index was 1)
Regulator (after saturation) = 38.6439672225803

Generator 1 is [74606 : -497568 : 343]; height 8.55093823853429
Generator 2 is [123693042 : 2290047101 : 287496]; height 10.0476138192177

Regulator = 38.6439672225803

The rank and full Mordell-Weil basis have been determined unconditionally.
 (2.52 seconds)

■楕円曲線Eの有理点から、楕円曲線Cの有理点(x:y:z)をいくつか求める。

[pari/gpによる計算]
gp> read("x3m37636x.gp")
time = 94 ms.
gp> rpCC(2)
[13731978001341, -19493235973922211842773249, 6005859158666]
[-6005859158666, 19493235973922211842773249, -13731978001341]
[6005859158666, -19493235973922211842773249, -13731978001341]
[13731978001341, 19493235973922211842773249, -6005859158666]
[18388885479, -173523910661376094249, 40929505802]
[40929505802, 173523910661376094249, 18388885479]
[40929505802, -173523910661376094249, -18388885479]
[18388885479, 173523910661376094249, -40929505802]
[33745754578245579, -431663975437045045497682121766001, -64000334486210114]
[64000334486210114, 431663975437045045497682121766001, -33745754578245579]
[64000334486210114, -431663975437045045497682121766001, 33745754578245579]
[-33745754578245579, 431663975437045045497682121766001, -64000334486210114]
[56569757228031167875937254143633, -327658635516556991085437645060738623030879938023695035102969049, -20396137263685122406579335894674]
[20396137263685122406579335894674, 327658635516556991085437645060738623030879938023695035102969049, -56569757228031167875937254143633]
[20396137263685122406579335894674, -327658635516556991085437645060738623030879938023695035102969049, 56569757228031167875937254143633]
[56569757228031167875937254143633, 327658635516556991085437645060738623030879938023695035102969049, 20396137263685122406579335894674]
[24052825399614791904069864287243753481216207558017402451, -62918275086490740218345834579295104422806842856036937706810293064180139547079016269258629412414583434157284449, 14899975389758418095917019066232540644116785380338268806]
[-14899975389758418095917019066232540644116785380338268806, 62918275086490740218345834579295104422806842856036937706810293064180139547079016269258629412414583434157284449, -24052825399614791904069864287243753481216207558017402451]
[14899975389758418095917019066232540644116785380338268806, -62918275086490740218345834579295104422806842856036937706810293064180139547079016269258629412414583434157284449, -24052825399614791904069864287243753481216207558017402451]
[24052825399614791904069864287243753481216207558017402451, 62918275086490740218345834579295104422806842856036937706810293064180139547079016269258629412414583434157284449, -14899975389758418095917019066232540644116785380338268806]
[11619875966182, -25318076626587457417229929, -14478764558151]
[14478764558151, 25318076626587457417229929, -11619875966182]
[14478764558151, -25318076626587457417229929, 11619875966182]
[-11619875966182, 25318076626587457417229929, -14478764558151]
[54406, -300565249, -5949]
[5949, 300565249, -54406]
[0, 0, 0]
[54406, 300565249, 5949]
[74734, -737072569, 68097]
[-68097, 737072569, -74734]
[68097, -737072569, -74734]
[74734, 737072569, -68097]
[-1836778949566, -720486501472037686558646161, -84237570591099]
[84237570591099, 720486501472037686558646161, 1836778949566]
[84237570591099, -720486501472037686558646161, -1836778949566]
[1836778949566, 720486501472037686558646161, -84237570591099]
[31951294023088672460831208254858, -142242879984709938910764584129129745915970580820764300785264009, -30973759198706025026367910862409]
[30973759198706025026367910862409, 142242879984709938910764584129129745915970580820764300785264009, -31951294023088672460831208254858]
[30973759198706025026367910862409, -142242879984709938910764584129129745915970580820764300785264009, 31951294023088672460831208254858]
[-31951294023088672460831208254858, 142242879984709938910764584129129745915970580820764300785264009, -30973759198706025026367910862409]
[358122449396177141733, -25777209037795093896542436989745766453969, 468080583507025844042]
[-468080583507025844042, 25777209037795093896542436989745766453969, -358122449396177141733]
[468080583507025844042, -25777209037795093896542436989745766453969, -358122449396177141733]
[358122449396177141733, 25777209037795093896542436989745766453969, -468080583507025844042]
[418641, -340219290841, -1829258]
[1829258, 340219290841, -418641]
[1829258, -340219290841, 418641]
[-418641, 340219290841, -1829258]
[3, -1, -2]
[2, 1, -3]
[2, -1, 3]
[3, 1, 2]
[3177, -1029961, 1006]
[-1006, 1029961, -3177]
[1006, -1029961, -3177]
[3177, 1029961, -1006]
[887025399231723, -256226403773975592243907793329, 1548464267793862]
[1548464267793862, 256226403773975592243907793329, 887025399231723]
[1548464267793862, -256226403773975592243907793329, -887025399231723]
[887025399231723, 256226403773975592243907793329, -1548464267793862]
[445539889251174225869962977142272742, -20424405403352364368921333659808721007918872087493754099233468208065081, -180420965179935149446517071093851519]
[180420965179935149446517071093851519, 20424405403352364368921333659808721007918872087493754099233468208065081, -445539889251174225869962977142272742]
[180420965179935149446517071093851519, -20424405403352364368921333659808721007918872087493754099233468208065081, 445539889251174225869962977142272742]
[445539889251174225869962977142272742, 20424405403352364368921333659808721007918872087493754099233468208065081, 180420965179935149446517071093851519]
[1548464267793862, -256226403773975592243907793329, 887025399231723]
[-887025399231723, 256226403773975592243907793329, -1548464267793862]
[887025399231723, -256226403773975592243907793329, -1548464267793862]
[1548464267793862, 256226403773975592243907793329, -887025399231723]
[1006, -1029961, 3177]
[3177, 1029961, 1006]
[3177, -1029961, -1006]
[1006, 1029961, -3177]
[2, -1, -3]
[3, 1, -2]
[3, -1, 2]
[-2, 1, -3]
[1829258, -340219290841, -418641]
[418641, 340219290841, -1829258]
[418641, -340219290841, 1829258]
[1829258, 340219290841, 418641]
[-692806265698098549054195494786458406950237439726490308301, -11278897633514402472328948801409984782306934429312697836674636242259666994973496089361366248140168808059572211130529, -10539602553331836125484460337851563697672039740217449663626]
[10539602553331836125484460337851563697672039740217449663626, 11278897633514402472328948801409984782306934429312697836674636242259666994973496089361366248140168808059572211130529, 692806265698098549054195494786458406950237439726490308301]
[10539602553331836125484460337851563697672039740217449663626, -11278897633514402472328948801409984782306934429312697836674636242259666994973496089361366248140168808059572211130529, -692806265698098549054195494786458406950237439726490308301]
[692806265698098549054195494786458406950237439726490308301, 11278897633514402472328948801409984782306934429312697836674636242259666994973496089361366248140168808059572211130529, -10539602553331836125484460337851563697672039740217449663626]
[30973759198706025026367910862409, -142242879984709938910764584129129745915970580820764300785264009, -31951294023088672460831208254858]
[31951294023088672460831208254858, 142242879984709938910764584129129745915970580820764300785264009, -30973759198706025026367910862409]
[31951294023088672460831208254858, -142242879984709938910764584129129745915970580820764300785264009, 30973759198706025026367910862409]
[-30973759198706025026367910862409, 142242879984709938910764584129129745915970580820764300785264009, -31951294023088672460831208254858]
[84237570591099, -720486501472037686558646161, 1836778949566]
[-1836778949566, 720486501472037686558646161, -84237570591099]
[1836778949566, -720486501472037686558646161, -84237570591099]
[84237570591099, 720486501472037686558646161, -1836778949566]
[68097, -737072569, 74734]
[-74734, 737072569, -68097]
[74734, -737072569, -68097]
[68097, 737072569, -74734]
[5949, -300565249, -54406]
[54406, 300565249, -5949]
[54406, -300565249, 5949]
[-5949, 300565249, -54406]
time = 263 ms.

■不定方程式x4+z4=97y2の正整数解x,y,zで、primitiveなもの、つまり、gcd(x,y,z)=1となるものは、無数に存在する。


[参考文献]


Last Update: 2005.08.21
H.Nakao

Homeに戻る[Homeに戻る]  一覧に戻る[一覧に戻る]