Cn: x3+y3+z3=n
where
0 <= x <= y <= z,
1 < n <= 700,
gcd(x,y,z)=1
|
| n |
x |
y |
z |
| 1 |
0 |
0 |
1 |
| 2 |
0 |
1 |
1 |
| 3 |
1 |
1 |
1 |
| 9 |
0 |
1 |
2 |
| 10 |
1 |
1 |
2 |
| 17 |
1 |
2 |
2 |
| 28 |
0 |
1 |
3 |
| 29 |
1 |
1 |
3 |
| 35 |
0 |
2 |
3 |
| 36 |
1 |
2 |
3 |
| 43 |
2 |
2 |
3 |
| 55 |
1 |
3 |
3 |
| 62 |
2 |
3 |
3 |
| 65 |
0 |
1 |
4 |
| 66 |
1 |
1 |
4 |
| 73 |
1 |
2 |
4 |
| 91 |
0 |
3 |
4 |
| 92 |
1 |
3 |
4 |
| 99 |
2 |
3 |
4 |
| 118 |
3 |
3 |
4 |
| 126 |
0 |
1 |
5 |
| 127 |
1 |
1 |
5 |
| 129 |
1 |
4 |
4 |
| 133 |
0 |
2 |
5 |
| 134 |
1 |
2 |
5 |
| 141 |
2 |
2 |
5 |
| 152 |
0 |
3 |
5 |
| 153 |
1 |
3 |
5 |
| 155 |
3 |
4 |
4 |
| 160 |
2 |
3 |
5 |
| 179 |
3 |
3 |
5 |
| 189 |
0 |
4 |
5 |
| 190 |
1 |
4 |
5 |
| 197 |
2 |
4 |
5 |
| 216 |
3 |
4 |
5 |
| 217 |
0 |
1 |
6 |
| 218 |
1 |
1 |
6 |
| 225 |
1 |
2 |
6 |
| 244 |
1 |
3 |
6 |
| 251 |
1 |
5 |
5 |
| - |
2 |
3 |
6 |
| 253 |
4 |
4 |
5 |
| 258 |
2 |
5 |
5 |
| 277 |
3 |
5 |
5 |
| 281 |
1 |
4 |
6 |
| 307 |
3 |
4 |
6 |
| 314 |
4 |
5 |
5 |
| 341 |
0 |
5 |
6 |
| 342 |
1 |
5 |
6 |
| 344 |
0 |
1 |
7 |
| 345 |
1 |
1 |
7 |
| 349 |
2 |
5 |
6 |
| 351 |
0 |
2 |
7 |
| 352 |
1 |
2 |
7 |
| 359 |
2 |
2 |
7 |
| 368 |
3 |
5 |
6 |
| 370 |
0 |
3 |
7 |
| 371 |
1 |
3 |
7 |
| 378 |
2 |
3 |
7 |
| 397 |
3 |
3 |
7 |
| 405 |
4 |
5 |
6 |
| 407 |
0 |
4 |
7 |
| 408 |
1 |
4 |
7 |
| 415 |
2 |
4 |
7 |
| 433 |
1 |
6 |
6 |
| 434 |
3 |
4 |
7 |
| 466 |
5 |
5 |
6 |
| 468 |
0 |
5 |
7 |
| 469 |
1 |
5 |
7 |
| 471 |
4 |
4 |
7 |
| 476 |
2 |
5 |
7 |
| 495 |
3 |
5 |
7 |
| 513 |
0 |
1 |
8 |
| 514 |
1 |
1 |
8 |
| 521 |
1 |
2 |
8 |
| 532 |
4 |
5 |
7 |
| 539 |
0 |
3 |
8 |
| 540 |
1 |
3 |
8 |
| 547 |
2 |
3 |
8 |
| 557 |
5 |
6 |
6 |
| 559 |
0 |
6 |
7 |
| 560 |
1 |
6 |
7 |
| 566 |
3 |
3 |
8 |
| 567 |
2 |
6 |
7 |
| 577 |
1 |
4 |
8 |
| 586 |
3 |
6 |
7 |
| 593 |
5 |
5 |
7 |
| 603 |
3 |
4 |
8 |
| 623 |
4 |
6 |
7 |
| 637 |
0 |
5 |
8 |
| 638 |
1 |
5 |
8 |
| 645 |
2 |
5 |
8 |
| 664 |
3 |
5 |
8 |
| 684 |
5 |
6 |
7 |
| 687 |
1 |
7 |
7 |
| 694 |
2 |
7 |
7 |
|
Cn: x3+y3+z3=n
where
0 <= x <= y <= z,
701 < n <= 1500,
gcd(x,y,z)=1
|
| n |
x |
y |
z |
| 701 |
4 |
5 |
8 |
| 713 |
3 |
7 |
7 |
| 729 |
1 |
6 |
8 |
| 730 |
0 |
1 |
9 |
| 731 |
1 |
1 |
9 |
| 737 |
0 |
2 |
9 |
| 738 |
1 |
2 |
9 |
| 745 |
2 |
2 |
9 |
| 750 |
4 |
7 |
7 |
| 755 |
3 |
6 |
8 |
| 757 |
1 |
3 |
9 |
| 762 |
5 |
5 |
8 |
| 764 |
2 |
3 |
9 |
| 775 |
6 |
6 |
7 |
| 793 |
0 |
4 |
9 |
| 794 |
1 |
4 |
9 |
| 801 |
2 |
4 |
9 |
| 811 |
5 |
7 |
7 |
| 820 |
3 |
4 |
9 |
| 853 |
5 |
6 |
8 |
| 854 |
0 |
5 |
9 |
| 855 |
0 |
7 |
8 |
| - |
1 |
5 |
9 |
| 856 |
1 |
7 |
8 |
| 857 |
4 |
4 |
9 |
| 862 |
2 |
5 |
9 |
| 863 |
2 |
7 |
8 |
| 881 |
3 |
5 |
9 |
| 882 |
3 |
7 |
8 |
| 902 |
6 |
7 |
7 |
| 918 |
4 |
5 |
9 |
| 919 |
4 |
7 |
8 |
| 946 |
1 |
6 |
9 |
| 953 |
2 |
6 |
9 |
| 979 |
5 |
5 |
9 |
| 980 |
5 |
7 |
8 |
| 1001 |
0 |
1 |
10 |
| 1002 |
1 |
1 |
10 |
| 1009 |
1 |
2 |
10 |
| - |
4 |
6 |
9 |
| 1025 |
1 |
8 |
8 |
| 1027 |
0 |
3 |
10 |
| 1028 |
1 |
3 |
10 |
| 1035 |
2 |
3 |
10 |
| 1051 |
3 |
8 |
8 |
| 1054 |
3 |
3 |
10 |
| 1065 |
1 |
4 |
10 |
| 1070 |
5 |
6 |
9 |
| 1071 |
6 |
7 |
8 |
| 1072 |
0 |
7 |
9 |
| 1073 |
1 |
7 |
9 |
| 1080 |
2 |
7 |
9 |
| 1091 |
3 |
4 |
10 |
| 1099 |
3 |
7 |
9 |
| 1126 |
1 |
5 |
10 |
| 1133 |
2 |
5 |
10 |
| 1136 |
4 |
7 |
9 |
| 1149 |
5 |
8 |
8 |
| 1152 |
3 |
5 |
10 |
| 1189 |
4 |
5 |
10 |
| 1197 |
5 |
7 |
9 |
| 1198 |
7 |
7 |
8 |
| 1217 |
1 |
6 |
10 |
| 1241 |
0 |
8 |
9 |
| 1242 |
1 |
8 |
9 |
| 1243 |
3 |
6 |
10 |
| 1249 |
2 |
8 |
9 |
| 1268 |
3 |
8 |
9 |
| 1288 |
6 |
7 |
9 |
| 1305 |
4 |
8 |
9 |
| 1332 |
0 |
1 |
11 |
| 1333 |
1 |
1 |
11 |
| 1339 |
0 |
2 |
11 |
| 1340 |
1 |
2 |
11 |
| 1341 |
5 |
6 |
10 |
| 1343 |
0 |
7 |
10 |
| 1344 |
1 |
7 |
10 |
| 1347 |
2 |
2 |
11 |
| 1351 |
2 |
7 |
10 |
| 1358 |
0 |
3 |
11 |
| 1359 |
1 |
3 |
11 |
| 1366 |
2 |
3 |
11 |
| - |
5 |
8 |
9 |
| 1367 |
7 |
8 |
8 |
| 1370 |
3 |
7 |
10 |
| 1385 |
3 |
3 |
11 |
| 1395 |
0 |
4 |
11 |
| 1396 |
1 |
4 |
11 |
| 1403 |
2 |
4 |
11 |
| 1407 |
4 |
7 |
10 |
| 1415 |
7 |
7 |
9 |
| 1422 |
3 |
4 |
11 |
| 1456 |
0 |
5 |
11 |
| 1457 |
1 |
5 |
11 |
| - |
6 |
8 |
9 |
| 1459 |
1 |
9 |
9 |
| - |
4 |
4 |
11 |
| 1464 |
2 |
5 |
11 |
| 1466 |
2 |
9 |
9 |
| 1468 |
5 |
7 |
10 |
| 1483 |
3 |
5 |
11 |
|
Cn: x3+y3+z3=n
where
0 <= x <= y <= z,
1501 < n <= 2400,
gcd(x,y,z)=1
|
| n |
x |
y |
z |
| 1513 |
1 |
8 |
10 |
| 1520 |
4 |
5 |
11 |
| 1522 |
4 |
9 |
9 |
| 1539 |
3 |
8 |
10 |
| 1547 |
0 |
6 |
11 |
| 1548 |
1 |
6 |
11 |
| 1555 |
2 |
6 |
11 |
| 1559 |
6 |
7 |
10 |
| 1574 |
3 |
6 |
11 |
| 1581 |
5 |
5 |
11 |
| 1583 |
5 |
9 |
9 |
| 1584 |
7 |
8 |
9 |
| 1611 |
4 |
6 |
11 |
| 1637 |
5 |
8 |
10 |
| 1672 |
5 |
6 |
11 |
| 1674 |
0 |
7 |
11 |
| 1675 |
1 |
7 |
11 |
| 1682 |
2 |
7 |
11 |
| 1686 |
7 |
7 |
10 |
| 1701 |
3 |
7 |
11 |
| 1729 |
0 |
1 |
12 |
| - |
0 |
9 |
10 |
| 1730 |
1 |
1 |
12 |
| - |
1 |
9 |
10 |
| 1737 |
1 |
2 |
12 |
| - |
2 |
9 |
10 |
| 1738 |
4 |
7 |
11 |
| 1753 |
8 |
8 |
9 |
| 1756 |
1 |
3 |
12 |
| - |
3 |
9 |
10 |
| 1763 |
2 |
3 |
12 |
| - |
6 |
6 |
11 |
| 1793 |
1 |
4 |
12 |
| - |
4 |
9 |
10 |
| 1799 |
5 |
7 |
11 |
| 1801 |
7 |
9 |
9 |
| 1819 |
3 |
4 |
12 |
| 1843 |
0 |
8 |
11 |
| 1844 |
1 |
8 |
11 |
| 1851 |
2 |
8 |
11 |
| 1853 |
0 |
5 |
12 |
| 1854 |
1 |
5 |
12 |
| - |
5 |
9 |
10 |
| 1855 |
7 |
8 |
10 |
| 1861 |
2 |
5 |
12 |
| 1870 |
3 |
8 |
11 |
| 1880 |
3 |
5 |
12 |
| 1890 |
6 |
7 |
11 |
| 1907 |
4 |
8 |
11 |
| 1917 |
4 |
5 |
12 |
| 1945 |
1 |
6 |
12 |
| - |
6 |
9 |
10 |
| 1968 |
5 |
8 |
11 |
| 1970 |
8 |
9 |
9 |
| 1978 |
5 |
5 |
12 |
| 2001 |
1 |
10 |
10 |
| 2017 |
7 |
7 |
11 |
| 2027 |
3 |
10 |
10 |
| 2059 |
6 |
8 |
11 |
| 2060 |
0 |
9 |
11 |
| 2061 |
1 |
9 |
11 |
| 2068 |
2 |
9 |
11 |
| 2069 |
5 |
6 |
12 |
| 2071 |
0 |
7 |
12 |
| 2072 |
1 |
7 |
12 |
| - |
7 |
9 |
10 |
| 2079 |
2 |
7 |
12 |
| 2087 |
3 |
9 |
11 |
| 2098 |
3 |
7 |
12 |
| 2124 |
4 |
9 |
11 |
| 2135 |
4 |
7 |
12 |
| 2185 |
5 |
9 |
11 |
| 2186 |
7 |
8 |
11 |
| 2196 |
5 |
7 |
12 |
| 2198 |
0 |
1 |
13 |
| 2199 |
1 |
1 |
13 |
| 2205 |
0 |
2 |
13 |
| 2206 |
1 |
2 |
13 |
| 2213 |
2 |
2 |
13 |
| 2224 |
0 |
3 |
13 |
| 2225 |
1 |
3 |
13 |
| 2232 |
2 |
3 |
13 |
| 2241 |
1 |
8 |
12 |
| - |
8 |
9 |
10 |
| 2251 |
3 |
3 |
13 |
| 2261 |
0 |
4 |
13 |
| 2262 |
1 |
4 |
13 |
| 2267 |
3 |
8 |
12 |
| 2269 |
2 |
4 |
13 |
| 2276 |
6 |
9 |
11 |
| 2287 |
6 |
7 |
12 |
| 2288 |
3 |
4 |
13 |
| 2322 |
0 |
5 |
13 |
| 2323 |
1 |
5 |
13 |
| 2325 |
4 |
4 |
13 |
| 2330 |
2 |
5 |
13 |
| 2331 |
0 |
10 |
11 |
| 2332 |
1 |
10 |
11 |
| 2339 |
2 |
10 |
11 |
| 2343 |
7 |
10 |
10 |
| 2349 |
3 |
5 |
13 |
| 2355 |
8 |
8 |
11 |
| 2358 |
3 |
10 |
11 |
| 2365 |
5 |
8 |
12 |
| 2386 |
4 |
5 |
13 |
| 2395 |
4 |
10 |
11 |
|
Cn: x3+y3+z3=n
where
0 <= x <= y <= z,
2401 < n <= 3300,
gcd(x,y,z)=1
|
| n |
x |
y |
z |
| 2403 |
7 |
9 |
11 |
| 2413 |
0 |
6 |
13 |
| 2414 |
1 |
6 |
13 |
| - |
7 |
7 |
12 |
| 2421 |
2 |
6 |
13 |
| 2440 |
3 |
6 |
13 |
| 2447 |
5 |
5 |
13 |
| 2456 |
5 |
10 |
11 |
| 2458 |
1 |
9 |
12 |
| - |
9 |
9 |
10 |
| 2465 |
2 |
9 |
12 |
| 2477 |
4 |
6 |
13 |
| 2521 |
4 |
9 |
12 |
| 2538 |
5 |
6 |
13 |
| 2540 |
0 |
7 |
13 |
| 2541 |
1 |
7 |
13 |
| 2547 |
6 |
10 |
11 |
| 2548 |
2 |
7 |
13 |
| 2567 |
3 |
7 |
13 |
| 2572 |
8 |
9 |
11 |
| 2582 |
5 |
9 |
12 |
| 2583 |
7 |
8 |
12 |
| 2604 |
4 |
7 |
13 |
| 2629 |
6 |
6 |
13 |
| 2663 |
1 |
11 |
11 |
| 2665 |
5 |
7 |
13 |
| 2670 |
2 |
11 |
11 |
| 2674 |
7 |
10 |
11 |
| 2689 |
3 |
11 |
11 |
| 2709 |
0 |
8 |
13 |
| 2710 |
1 |
8 |
13 |
| 2717 |
2 |
8 |
13 |
| 2726 |
4 |
11 |
11 |
| 2729 |
1 |
10 |
12 |
| - |
9 |
10 |
10 |
| 2736 |
3 |
8 |
13 |
| 2745 |
0 |
1 |
14 |
| 2746 |
1 |
1 |
14 |
| 2753 |
1 |
2 |
14 |
| 2755 |
3 |
10 |
12 |
| 2756 |
6 |
7 |
13 |
| 2771 |
0 |
3 |
14 |
| 2772 |
1 |
3 |
14 |
| 2773 |
4 |
8 |
13 |
| 2779 |
2 |
3 |
14 |
| 2787 |
5 |
11 |
11 |
| 2789 |
9 |
9 |
11 |
| 2798 |
3 |
3 |
14 |
| 2800 |
7 |
9 |
12 |
| 2809 |
1 |
4 |
14 |
| 2834 |
5 |
8 |
13 |
| 2835 |
3 |
4 |
14 |
| 2843 |
8 |
10 |
11 |
| 2853 |
5 |
10 |
12 |
| 2869 |
0 |
5 |
14 |
| 2870 |
1 |
5 |
14 |
| 2877 |
2 |
5 |
14 |
| 2878 |
6 |
11 |
11 |
| 2883 |
7 |
7 |
13 |
| 2896 |
3 |
5 |
14 |
| 2925 |
6 |
8 |
13 |
| 2926 |
0 |
9 |
13 |
| 2927 |
1 |
9 |
13 |
| 2933 |
4 |
5 |
14 |
| 2934 |
2 |
9 |
13 |
| 2953 |
3 |
9 |
13 |
| 2961 |
1 |
6 |
14 |
| 2969 |
8 |
9 |
12 |
| 2987 |
3 |
6 |
14 |
| 2990 |
4 |
9 |
13 |
| 2994 |
5 |
5 |
14 |
| 3005 |
7 |
11 |
11 |
| 3051 |
5 |
9 |
13 |
| 3052 |
7 |
8 |
13 |
| 3059 |
0 |
11 |
12 |
| 3060 |
1 |
11 |
12 |
| - |
9 |
10 |
11 |
| 3067 |
2 |
11 |
12 |
| 3071 |
7 |
10 |
12 |
| 3085 |
5 |
6 |
14 |
| 3086 |
3 |
11 |
12 |
| 3088 |
1 |
7 |
14 |
| 3095 |
2 |
7 |
14 |
| 3114 |
3 |
7 |
14 |
| 3123 |
4 |
11 |
12 |
| 3142 |
6 |
9 |
13 |
| 3151 |
4 |
7 |
14 |
| 3174 |
8 |
11 |
11 |
| 3184 |
5 |
11 |
12 |
| 3197 |
0 |
10 |
13 |
| 3198 |
1 |
10 |
13 |
| 3205 |
2 |
10 |
13 |
| 3212 |
5 |
7 |
14 |
| 3221 |
8 |
8 |
13 |
| 3224 |
3 |
10 |
13 |
| 3257 |
1 |
8 |
14 |
| 3261 |
4 |
10 |
13 |
| 3269 |
7 |
9 |
13 |
| 3275 |
6 |
11 |
12 |
| 3283 |
3 |
8 |
14 |
|
Cn: x3+y3+z3=n
where
0 <= x <= y <= z,
3301 < n <= 4200,
gcd(x,y,z)=1
|
| n |
x |
y |
z |
| 3303 |
6 |
7 |
14 |
| 3322 |
5 |
10 |
13 |
| 3331 |
10 |
10 |
11 |
| 3376 |
0 |
1 |
15 |
| 3377 |
1 |
1 |
15 |
| 3381 |
5 |
8 |
14 |
| 3383 |
0 |
2 |
15 |
| 3384 |
1 |
2 |
15 |
| 3391 |
2 |
2 |
15 |
| - |
9 |
11 |
11 |
| 3402 |
7 |
11 |
12 |
| 3403 |
1 |
3 |
15 |
| 3410 |
2 |
3 |
15 |
| 3413 |
6 |
10 |
13 |
| 3438 |
8 |
9 |
13 |
| 3439 |
0 |
4 |
15 |
| 3440 |
1 |
4 |
15 |
| 3447 |
2 |
4 |
15 |
| 3457 |
1 |
12 |
12 |
| - |
9 |
10 |
12 |
| 3466 |
3 |
4 |
15 |
| 3473 |
0 |
9 |
14 |
| 3474 |
1 |
9 |
14 |
| 3481 |
2 |
9 |
14 |
| 3500 |
3 |
9 |
14 |
| 3501 |
1 |
5 |
15 |
| 3503 |
4 |
4 |
15 |
| 3508 |
2 |
5 |
15 |
| 3527 |
3 |
5 |
15 |
| 3528 |
0 |
11 |
13 |
| 3529 |
1 |
11 |
13 |
| 3536 |
2 |
11 |
13 |
| 3537 |
4 |
9 |
14 |
| 3540 |
7 |
10 |
13 |
| 3555 |
3 |
11 |
13 |
| 3564 |
4 |
5 |
15 |
| 3571 |
8 |
11 |
12 |
| 3581 |
5 |
12 |
12 |
| 3592 |
1 |
6 |
15 |
| - |
4 |
11 |
13 |
| 3598 |
5 |
9 |
14 |
| 3599 |
2 |
6 |
15 |
| - |
7 |
8 |
14 |
| 3653 |
5 |
11 |
13 |
| 3655 |
4 |
6 |
15 |
| - |
9 |
9 |
13 |
| 3662 |
10 |
11 |
11 |
| 3689 |
6 |
9 |
14 |
| 3709 |
8 |
10 |
13 |
| 3716 |
5 |
6 |
15 |
| 3718 |
0 |
7 |
15 |
| 3719 |
1 |
7 |
15 |
| 3726 |
2 |
7 |
15 |
| 3744 |
6 |
11 |
13 |
| 3745 |
1 |
10 |
14 |
| - |
3 |
7 |
15 |
| 3771 |
3 |
10 |
14 |
| 3782 |
4 |
7 |
15 |
| 3788 |
9 |
11 |
12 |
| 3799 |
7 |
12 |
12 |
| 3816 |
7 |
9 |
14 |
| 3843 |
5 |
7 |
15 |
| 3869 |
5 |
10 |
14 |
| 3871 |
7 |
11 |
13 |
| 3887 |
0 |
8 |
15 |
| 3888 |
1 |
8 |
15 |
| 3895 |
2 |
8 |
15 |
| 3914 |
3 |
8 |
15 |
| 3925 |
0 |
12 |
13 |
| 3926 |
1 |
12 |
13 |
| - |
9 |
10 |
13 |
| 3933 |
2 |
12 |
13 |
| 3934 |
6 |
7 |
15 |
| 3951 |
4 |
8 |
15 |
| 3952 |
3 |
12 |
13 |
| 3985 |
8 |
9 |
14 |
| 3989 |
4 |
12 |
13 |
| 4012 |
5 |
8 |
15 |
| 4040 |
8 |
11 |
13 |
| 4050 |
5 |
12 |
13 |
| 4059 |
10 |
11 |
12 |
| 4061 |
7 |
7 |
15 |
| 4075 |
0 |
11 |
14 |
| 4076 |
1 |
11 |
14 |
| 4083 |
2 |
11 |
14 |
| 4087 |
7 |
10 |
14 |
| 4097 |
0 |
1 |
16 |
| 4098 |
1 |
1 |
16 |
| 4102 |
3 |
11 |
14 |
| 4103 |
6 |
8 |
15 |
| 4105 |
1 |
2 |
16 |
| - |
1 |
9 |
15 |
| 4112 |
2 |
9 |
15 |
| 4123 |
0 |
3 |
16 |
| 4124 |
1 |
3 |
16 |
| 4131 |
2 |
3 |
16 |
| 4139 |
4 |
11 |
14 |
| 4141 |
6 |
12 |
13 |
| 4150 |
3 |
3 |
16 |
| 4161 |
1 |
4 |
16 |
| 4168 |
4 |
9 |
15 |
| 4187 |
3 |
4 |
16 |
| 4197 |
10 |
10 |
13 |
| 4200 |
5 |
11 |
14 |
|
Cn: x3+y3+z3=n
where
0 <= x <= y <= z,
4201 < n <= 5000,
gcd(x,y,z)=1
|
| n |
x |
y |
z |
| 4202 |
9 |
9 |
14 |
| 4221 |
0 |
5 |
16 |
| 4222 |
1 |
5 |
16 |
| 4229 |
2 |
5 |
16 |
| - |
5 |
9 |
15 |
| 4230 |
7 |
8 |
15 |
| 4248 |
3 |
5 |
16 |
| 4257 |
9 |
11 |
13 |
| 4268 |
7 |
12 |
13 |
| 4285 |
4 |
5 |
16 |
| 4291 |
6 |
11 |
14 |
| 4313 |
1 |
6 |
16 |
| 4339 |
3 |
6 |
16 |
| 4346 |
5 |
5 |
16 |
| 4376 |
1 |
10 |
15 |
| 4383 |
2 |
10 |
15 |
| 4390 |
11 |
11 |
12 |
| 4395 |
1 |
13 |
13 |
| 4399 |
8 |
8 |
15 |
| 4402 |
2 |
13 |
13 |
| - |
3 |
10 |
15 |
| 4418 |
7 |
11 |
14 |
| 4421 |
3 |
13 |
13 |
| 4437 |
5 |
6 |
16 |
| - |
8 |
12 |
13 |
| 4439 |
0 |
7 |
16 |
| - |
4 |
10 |
15 |
| 4440 |
1 |
7 |
16 |
| 4447 |
2 |
7 |
16 |
| - |
7 |
9 |
15 |
| 4458 |
4 |
13 |
13 |
| 4466 |
3 |
7 |
16 |
| 4473 |
1 |
12 |
14 |
| - |
9 |
10 |
14 |
| 4499 |
3 |
12 |
14 |
| 4503 |
4 |
7 |
16 |
| 4519 |
5 |
13 |
13 |
| 4528 |
10 |
11 |
13 |
| 4564 |
5 |
7 |
16 |
| 4587 |
8 |
11 |
14 |
| 4591 |
6 |
10 |
15 |
| 4597 |
5 |
12 |
14 |
| 4609 |
1 |
8 |
16 |
| 4610 |
6 |
13 |
13 |
| 4616 |
8 |
9 |
15 |
| 4635 |
3 |
8 |
16 |
| 4654 |
9 |
12 |
13 |
| 4655 |
6 |
7 |
16 |
| 4706 |
0 |
11 |
15 |
| 4707 |
1 |
11 |
15 |
| 4714 |
2 |
11 |
15 |
| 4718 |
7 |
10 |
15 |
| 4733 |
3 |
11 |
15 |
| - |
5 |
8 |
16 |
| 4737 |
7 |
13 |
13 |
| 4770 |
4 |
11 |
15 |
| 4782 |
7 |
7 |
16 |
| 4787 |
11 |
12 |
12 |
| 4804 |
9 |
11 |
14 |
| 4815 |
7 |
12 |
14 |
| 4825 |
0 |
9 |
16 |
| 4826 |
1 |
9 |
16 |
| 4831 |
5 |
11 |
15 |
| 4833 |
2 |
9 |
16 |
| 4852 |
3 |
9 |
16 |
| 4859 |
11 |
11 |
13 |
| 4887 |
8 |
10 |
15 |
| 4889 |
4 |
9 |
16 |
| 4906 |
8 |
13 |
13 |
| 4914 |
0 |
1 |
17 |
| 4915 |
1 |
1 |
17 |
| 4921 |
0 |
2 |
17 |
| 4922 |
1 |
2 |
17 |
| - |
6 |
11 |
15 |
| 4925 |
10 |
12 |
13 |
| 4929 |
2 |
2 |
17 |
| 4940 |
0 |
3 |
17 |
| 4941 |
0 |
13 |
14 |
| - |
1 |
3 |
17 |
| 4942 |
1 |
13 |
14 |
| 4948 |
2 |
3 |
17 |
| 4949 |
2 |
13 |
14 |
| 4950 |
5 |
9 |
16 |
| 4951 |
7 |
8 |
16 |
| 4967 |
3 |
3 |
17 |
| 4968 |
3 |
13 |
14 |
| 4977 |
0 |
4 |
17 |
| 4978 |
1 |
4 |
17 |
| 4985 |
2 |
4 |
17 |
|