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Abstract

This paper presents a method to construct infinite families of primitive integer
solutions (ged(z,y, z,w) =1 and z # = + y) to the quartic Diophantine equation

2t 4yt 2t = 22!

for square-free positive integers n satisfying ged(n,290) = 1, using rational points on
elliptic curves.

We reduce the problem to common rational points on parameter-dependent quadratic
curves , , and further to a quartic elliptic curve via the chord-and-tangent
method. MAGMA’s 4-descent is employed to compute the Mordell-Weil group, gener-
ating infinite families of solutions. Local congruence conditions are shown to be neces-
sary and sufficient for solution existence, with singular cases handled elementarily.[4] [5]

Specifically, we provide non-trivial solutions for n = 101, 1007 where the canonical
heights of the corresponding rational points exceed 210, demonstrating the effectiveness
of the 4-descent approach.

1 Introduction

The study of quartic Diophantine equations of the form z* +y* 4 z* = Dw? has been central
in number theory since Noam Elkies’ landmark discovery of counterexamples to Euler’s
conjecture [I]. While Elkies found solutions to z* + y* + 2% = w?, the case with coefficient
2n? on the right remains largely unexplored except for computational searches [8| [9, [10].

This paper provides the first parametrization of primitive solutions (ged(z,y, z,w) = 1
and z # x + y) for several square-free n satisfying specific local conditions, via a novel
reduction to elliptic curve rational points.

Using the above parameterization method, we have found infinite families of integer
solutions to the Diophantine equation z* + y* + z* = 2n2w* with z # = + y for each n = 33,
41, 47, 51, 59, 69, 77, 83, 89, 101, 119, 123, 137, 141, 149, 159, 161, 173, 179, 187, 197, 209,
213, 227, 233, 383, 389, 393, 1007 and 1013, for which no previously known solutions exist,
in the range n < 233.



In this study, we verify the validity of the Hasse’s principle for specific n, and by using
the 4-descent of MAGMA, we prove that the elements of the Tate-Shafarevich group actually
correspond to rational points in concrete numbers.

2 Problem Statement and Conditions

Consider the equation
ot 4yt 2t = 20wt (1)

where n is square-free and satisfies:

21¢n,

51n, (2)
29 { n.

We can easily confirm that if n is square-free and ged(n, 290) > 1, then the equation (|1)
have no solutions with ged(z,y, 2z, w) = 1 by checking (mod 16), (mod 5), and (mod 29).
Assuming z # 0, normalize by dividing by 2*, and replace 2,4 2 to m,y, t:

ot + oyt + 1 =20t (3)

3 Quadratic Curves and Common Points

Introduce rational parameter v and two quadratic curves:
(u? —2)y* = (—u? + 4u — 2)2? — 2(u® — 2u + 2)x + (—u? + 4u — 2) (4)
+n(u? —2)t* = (u* — 2u + 2)2% + (—u? + 4u — 2)z + (v — 2u + 2). (5)

Theorem 1. Common rational solutions (z,y,t) to (), (5) yield solutions to (3).[4]

4 The Involution Map

For rational parameter u and variables x, y, ¢, we deine the following involution map 7:

wl gy t) ifu# 2,
(1=, —7,9,1) # ©)

u7$7 7t =
" v:1) {(2,—x,y,t) ifu=2.

The involution 7 preserves the quadratic curves and , and therefore all their com-
mon rational points (x,y,t) with except for the sign of x.
Therefore, the integer solutions of (1)) are identical for parameter u and parameter 7(u) =
u—. In other words, it is sufficient to find the common rational point (z,y,t) for either
parameter u or parameter 7(u) .

u—1



5 Reduction to Quartic Elliptic Curve

Given a constant H (for example, 200), using Helmut Hasse’s local-global principle, we
can select a rational number u such that the height h(u) < H, so that the two quadratic
curves and each have a rational point. Then, we can filter the rational parameter u
effectively. This contributes to the efficiency of rational point search.

For each rational parameter u, fix initial rational point (zg, yo) on ; intersect with line

y = k(r —2x0) + o

to get second point (z(k),y(k)) as rational functions of k.
Substitute z(k) into to obtain the assoicated elliptic curve:

Bpu: Y2 =aX* +bX? + cX? +dX +e, (7)

where Y = t(pk* + ¢k +1)?, X =k, and p,q,7,a,b,c,d, e € Z.

The right-hand quadratic in has no real roots, so sign is unique: +Y?if a > 0, —Y?2
if a < 0.[5]

Because a,b,c,d,e € 7 , a rational point (X,Y’) on with X ¢ Z should be a non-

torsion point .

6 Singular Cases

The first quadratic curve is singular iff u = 0, 1, 2; then reduces to
v+ x4+ 1 =nt?

solvable only for n = 1. The second quadratic curve is always nonsingular.[4]

Seiji Tomita and Oliver Couto [2] (Th.4.2) give a parameter solution to (/1)) using poly-
nomials in p and ¢ if there exist integers p and ¢ such that n = 3p? + ¢®>. However, our
parameter solution via the elliptic curves is different from this polynomial solution and we
could apply even when n # 3p? + ¢>.

7 Computing Rational Points with MAGMA

Transform @ to Weierstrass form; apply MAGMA’s FourDescent to compute rank, gener-
ators, and torsion.
We choose a rational parameter u and the associated elliptic curve with positive rank
For non-torsion point (X,Y) on the curve , generate m-multiples; set k& = X and
back-substitute to (x,y,t), then clear denominators for primitive (z,y, z, w).[5]

8 Necessity and Sufficiency of Local Conditions

Theorem 2. For arbitary square-free integer n, infinite primitive solutions of exist iff
ged(n, 290) = 1 and there exist a rational number « and the associated elliptic curve E,,,
with positive rank .



Proof: Sufficiency via rankE,, , > 1; necessity via p-adic obstructions for p=2,5,29.[3, [4]

Conjecture 1. If n is a square-free integer and ged(n, 290) = 1, then rankE, , > 0 for some
rational number w.

Remark 1. Conjecture |1} is valid for n < 247.

9 Numerical Examples

For example n = 41, we can filter rational number u with height(u) < 200 so that both

quadrtic curve and has a rational point. Then we can examine the following 144
rational numbers u:

11 -1134 -4 -4 4 78 8 -8 8

'5717749°537 27177 457 49713779797 257 45 81
-8 9 11 —11 12 —12 13 15 15 —16 17 19 19 —19

48 —51 =52 52 3 =55 =56 56 57 61 —61 —64 64 —64 —64

1937 1577 73 ' 137167 49 ° 89 1457109’ 1137 117 49 153’ 157 169’
67 —67 67 69 76 —76 —76 76 77 —79 —80 —84 —84 88 88

89 91 —-91 92 93 94 —-95 98 99 100 101 —101 101 102 —104

105 —-112 116 —116 —116 —119 119 —120 120 126 127 128 —128 —132 —132
527 117 71217 149 7 173 7 89 1457 101 169" 5 '153’ 145" 153 ° 97 ’ 181"’
135 138 141 141 145 146 147 150 —152 153 153 154 161 161 162

347857207327 6472971577 377 197 * 32°104° 737 527169’ 17’
162 165 167 168 171 173 —176 177 —177 177 178 179 182 186 187

1137527 101737 26 1817 197 8 * 193 197" 5 26 101" 73 197’
—188 —188 189 189 —196 —196 198 198 —199
137 7 185 ' 8 "1287 153 7 181 ' 89125 193

_ 198 : L : : —15559 775755 .
For u = 33z, we easily get a inital rational point R( 5505, 15577¢) of the quadratic curve

1)

A line with a slope of k that passes through R intersects the quadratic curve (4) with
another point (x(k).y(k)).

Then, we have following:



y —k ($ n 15559 ) n 775755 (8)
420776 420776’
(k) :61878143k;2 + 6170355270k — 8594866697 ()
—1673426152k2 4 6005735848 ’
3085177635k — 8372793090k + 11072351115
y(k) = (10)

—1673426152k2 4+ 6005735848
From @ and , we have followings:

{17251816(3977k” — 14273)215}2 = 287644205070868215349k* — 1436879617899897971340k>

+ 3997420003135110578878k* — 6003499258764516668940k + 4279348392455021754229.
(11)

We set

Y =17251816(3977k* — 14273)%, (12)
X =k, (13)

then we have following the associated elliptic curve

Ey1., 0 Y? =287644205070868215349X* — 1436879617899897971340.X* + 3997420003135110578878 X 2
— 6003499258764516668940.X + 4279348392455021754229 (14)

We confirm the syzygy maps an elliptic curve

B, 1y =2 — 131533381367244164215248081536630341171 7406722

— 496946952622325121564854492450656958760656582555086171408919691264
(15)

to the elliptic curve Ey .
The minimal standard model of EY, , is

Efm cy? =2 + 2% — 3237629437155959990z — 1919096286007227296033058600.  (16)



Considering Ejy,, to 2-descent of Ej, ,, we execute MAGMA’s 4-descent, and get two
independent rational points of £ ,, :

P, < —174942651055478264675987 20891124644686233492499046337781371 >
244780606357156 ’ 3829706654220268054696 ’
—14294068250419325295136330646500671045398507
2 ( 10710488752832501604605089844433796 ’
5513451734757779144704564173941245101175055697275239743153358521
1108444452616653816973134639524599540568006219348344 )

By rational transformation [2524656, 2124629306112, 0,0]"!. we get two independent ra-
tional points of EY) ,

—278766212361028884962560363157615040
691( 61195151589289 ’
42022169170381781318268794555009598687378195785697792
A78713331777533506837 )’
—22777197225615531144367809302749081158104851178197540800
2( 2677622188208125401151272461108449 ’
11090221586976991451411531078086682941672735310414994171896001971993851427077934592
138555556577081727121641829940574942571000777418543 )‘

(17)

By syzygy map, We have some rational points (X,Y’) of Ey, from rational points of
EY ., and some k = X:

30407075 945967865 1588437129 —1219384020107

262792877 1248057599 13721456335 2053661177915
7238621986098507  7238621986098507 2523484525026218281 2523484525026218281

15401438000287805" 15401438000287805" 616919842550050055 ~ 616919842550050055
7918680427205562475 7918680427205562475 206736470097243783595 206736470097243783595

1555531906528806611” 1555531906528806611 7 455301048052810772797" 455301048052810772797°

k

From (9)),(10)),(14),(12).(L3), we have a rational point (z,y,t) which satifies ([3). We have
an integer solution (z,y, z, w) with ged(z, y, 2z, w) = 1 which satisfies (I)). Changing sign and
replacing z,y, z so that 0 < z < y < 2z, we have following equations:



35401855 4 40865628* + 53562031* = 3362 - 7822733*

76298339723306940 + 144376098024837517* + 392097054273222611* = 3362 - 51745745604910607*
22630934278564908444565% 4 218426009168410193424516* + 383430470008039234123883*

= 3362 - 51630869931062938919159*
66362246478987836342552992091201664685210465639474020*

+ 96903091845971137820040019904874448516482466179139001*

+ 124994312898188111523490811243725150204657332635449303*

= 3362 - 17983883123274685049847136904533151182677188556511541*

—52

For v = 137 )

similarly, we have the associated elliptic curve

By 0 Y2 =146130108644622127X* — 34585954604570560.X > + 75769621840114278 X 2
— 370651588684471816.X + 306037888200539443 (18)

and rational numbers k£ = X:

16427 —74303 1042559 —2229773

153717 29149 712714417 1793951 ’
934714950429932604431377977 —61892621095341520962149406917

651572367992463462669439919°  5571721957938435347773599559
1069338108481668757405299870337 1277338685423332040496182410519

1855015185625408790131546702081 " 2234155375514514753340048721189’

k

and integer solutions of

92988* + 185585* + 200711* = 3362 - 30433*
314623956181553354273249972099755645960593522094013*

+ 33830232913875010523309417936289725557988600411726621*

+ 58958393745878311529280931462685062088878588503601020*

= 3362 - 7944572692937605931217541696712135904520977308433727*

44

169> Similarly, we have the associated elliptic curve

For v =



By, Y? =417877855555951071.X* 4+ 1299785550450804690.X° + 1519574898215554612.X 2
+ 791044232470008790.X + 154651753418222341 (19)

and rational numbers k = X:

~ —36225655093 —737917016899 —3284931787843 —14199170625974
42531504399 7 985152753743 ' 315094317701 ' 19434669271167

and integer solutions of

5441389686377966197* + 59528816491569463381" + 73706071122362481980"
= 3362 - 10576637809123172967"

Similarly, for several n we can find a rational number u, a initial rational point (o, yo)
of , a rational number k , and an integer solution (z,y,z,w) with 0 < z < y < z, the
result is as follows:

n ou (o, Y0) k Solution (x,y,z,w) (0 <z <y < z) height (k)
28 (12, B8 0TIt (11270111669357, 22338600682595, 67.012

80267274165144, 67603989724187)

30 2 (5358, ) =519 (1609, 2566, 4519, 2257) 21.068

33 (=52, 109) oLl (528988010581, 673826751736, 56.375
822834434251, 135897934731)

41 132 (g0 TSy 2558108 (35401855, 40865628, 53562031, 7822733)  36.996

41 2 (B aeir) e (9051, 142546, 264089, 33059) 24.724

51 2 (85, 512%) 28 (129205, 145309, 168674, 23303) 22.230

59 23 (5308, 802l s (228599, 398665, 545334, 63949) 27.057

69 125 (322933 579528y T (2512, 9347, 13145, 1409) 18.306

7 B (75308, So2m85)  STPT23. (111417913176, 652385155333,  58.008

3074200685543, 294747082303)

Table 1: 9 concrete primitive solutions spanning Height 4-14 digits. All n satisfy mod 5, 16,
29 conditions and ged=1.



n u (20, y0) k Solution (x,y,z,w) (0 <z <y < z) height (k)
83  F  ($£.2) 2087 (222601, 2408274, 2863999, 292549) 31.655
89 T (3 5) ol (1741159879, 278196472772,  51.797
415156380825, 38743789163)
89 T (3 55) A58 (1741159879, 278196472772, 51.797
415156380825, 38743789163)
101 S (3l918 Jsss2) T 0533 (11566524698278008178175494709128636544635230699
55533467549319684604321403836601861318197410455,
96201694481007146665176733936502346101197249772,
8264519317562045735851914877899065409532634189)
218.043
— — — rd —
119 S (GHeml Slomans) saeoioros (30287965481668073, 82860
434289126261707635,
996472927107738074,
77496631489680909)
123 32 (35, 55) =359 (10778, 13981, 20717, 1671) 19.127
37 2722 89 ’ ’ ’
137 25 (339 =115) PR (28988, 107079, 369559, 26597) 28.398
141 2 (33, 58 o (72211175, 446853184, 1030134149, 40.428
73587999)
149 22 ($22,3159) 28 (636, 835, 977, 77) 12.442
159 55 (2,32) g (337729, 353654, 622355, 43357) 25.795
161 Ir (286 56 =22 (262692, 641495, 842767, 60149) 24.866
173 3 (=, 2) =2 (63816, 94031, 110677, 7997) 20.166
179 FHB (SL8D, =101082) i (586876415, 2789777249, 4823616902, 44.395
311333271)
187 &L (5o, 2HE) —l (6086, 9507, 10861, 761) 20.390
197 3B (o882 ol (50704, 298617, 012059, 180461) 31.740
209 <t G St (456741325525, 11021276613067,  60.758
13918037099988, 879530604163)
213 L (3853, 5502 546386203 (46410580396087, 48706449849644,  66.220
118968414820139, 6940828958469)
221 o (3,8 AohTIRh s TaAsITIT (18170075829628946534152326312538321309945,
324694919799660579526277311707208043880141,
545942434978754261132356383765496357327888,
31804802854316895728509269912421630763669)
190.309
227 -1 (1,-2) s (31731, 855269, 2323538, 130273) 28.180
233 & (=250T =5047) lides (1103010172, 1861529873, 3269841633, 43.493

185225597)

Table 2: 19 concrete primitive solutions spanning Height 342 digits. All n satisfy mod 5,
16, 29 conditions and ged=1.



n u (0, Y0) k Solution (z,y,z,w) (0 <z <y < z) height (k)

239 38 (29psL TT00) - 890T0A0L2eTS (1640984772620303606, 85.474
3117491002540389405,
3477412467901354591
215837293427890067)

249 T (=Bl 12272) —493dTe0i0T] (7790928430539881312, 93.180
59531023402497214735,
61689237905359407721
3842966957265123567)

251 I (527, 528) 18 (1403, 1530, 3109, 169) 14.875

- - 767!
383 201 (ERRR, SSh) 1000 08a9Tes0s0TeTs (52271274597586749652046870748358, 149.093

56442182599777575561849640531969,
68037165015212162410398738968939,
3396464828358953323939105317063)

389 289 (P2 3i72)  39050815385513898 (2790220517471471853994808398379, 139.722
3375566679888983646972955355900,
3963453138704995482589945354391
194958328042827044471167136157)

393 28 (22, 236 St (201277984, 2153997596, 3061641247, 41.032
142059643)

1003 S0 (Fo5aed, Fo2me) 2200 (357153561, 441486806, 522795199, 39.595
15911377)

1007 5220 (G2l 9T80oT)  —21090383000157200 002901577 (18754633151703759081272317852581751270809408588853,

24040798893695666175180959976981448725994130618754,
276962098995579830477463625832507108420988928415519,
7339332340035270076957220087297502594586408542833)
232.595
1013 35 (3251 2908 ) 9963327853555 (24574653502948757745404, 104.165
98778234488177851314697,
101516509859021233400459,
3148857129793207750683)

Table 3: 9 concrete primitive solutions spanning Height 3-51 digits. All n satisfy mod 5, 16,
29 conditions and ged=1.
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10 Conclusion

This yields rational points (z,y,t) of via Mordell-Weil groups of (7). If we could find a
rational number u and the associated elliptic curve £, , with rankE,, , > 0, then the method
systematically generates infinte families of primitive solutions of .

While a universal parametric solution for all n remains an open question, the successful
derivation of a 46-digit solution for n = 101 through our elliptic curve reduction framework
marks a significant departure from previous constraints. Future work will focus on analyzing
the height of these points to better understand the arithmetic complexity of solutions for
n =2 (mod 3). While a universal parametric solution for all n remains an open question, the
successful derivation of a 46-digit solution for n = 101 through our elliptic curve reduction
framework marks a significant departure from previous constraints. Future work will focus
on analyzing the height of these points to better understand the arithmetic complexity of
solutions for n = 2 (mod 3).

Appendix: MAGMA Implementation

// search rational points for 4-descent fd and bound M
SetClassGroupBounds ("GRH") ;

function RP4(fd,M)
TO:=Realtime();
for J:=1 to #fd do
printf "J="; J;
FD:=fd[J];
pts:=PointsQI(FD,M);
F,m:=AssociatedEllipticCurve(FD); F;
printf "rootno="; RootNumber (F);
for K:=1 to #pts do
P:=m(pts([K]); P; printf "height "; Height(P);
IsPoint (F,P[1]);
end for; //K
end for; //J
T1:=Realtime(TO);
printf "realtime="; T1;
return #£fd;
end function,;

// calculate 4-descent for considering y~2=f(x) as 2-descent of the syzygy
// elliptic curve of 4th degree polynomial f(x)

P<x> := PolynomialRing(Rationals());

11



function CO(f)

SetClassGroupBounds ("GRH") ;

C := HyperellipticCurve(f);

time fd := FourDescent(C : RemoveTorsion);
#fd;

return fd;

end function;

//

// Example for elliptic curve :
// E_{41,u}: Y"2 = 287644205070868215349*X"4 - 1436879617899897971340*%X~3 \

// + 3997420003135110578878%X"2 - 6003499258764516668940%X \
// + 4279348392455021754229

// Execute:

//

//  £d:=C0(287644205070868215349%x"4 - 1436879617899897971340%x"3 \
// + 3997420003135110578878%x"2 - 6003499258764516668940%x \
// + 4279348392455021754229) ;

//

//  RP4(£fd,10712);

//
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