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Abstract

This paper presents a method to construct infinite families of primitive integer
solutions (gcd(x, y, z, w) = 1 and z ̸= x+ y) to the quartic Diophantine equation

x4 + y4 + z4 = 2n2w4

for square-free positive integers n satisfying gcd(n, 290) = 1, using rational points on
elliptic curves.

We reduce the problem to common rational points on parameter-dependent quadratic
curves (4), (5), and further to a quartic elliptic curve (7) via the chord-and-tangent
method. MAGMA’s 4-descent is employed to compute the Mordell-Weil group, gener-
ating infinite families of solutions. Local congruence conditions are shown to be neces-
sary and sufficient for solution existence, with singular cases handled elementarily.[4, 5]

Specifically, we provide non-trivial solutions for n = 101, 1007 where the canonical
heights of the corresponding rational points exceed 210, demonstrating the effectiveness
of the 4-descent approach.

1 Introduction

The study of quartic Diophantine equations of the form x4+y4+ z4 = Dw4 has been central
in number theory since Noam Elkies’ landmark discovery of counterexamples to Euler’s
conjecture [1]. While Elkies found solutions to x4 + y4 + z4 = w4, the case with coefficient
2n2 on the right remains largely unexplored except for computational searches [8, 9, 10].

This paper provides the first parametrization of primitive solutions (gcd(x, y, z, w) = 1
and z ̸= x + y) for several square-free n satisfying specific local conditions, via a novel
reduction to elliptic curve rational points.

Using the above parameterization method, we have found infinite families of integer
solutions to the Diophantine equation x4 + y4 + z4 = 2n2w4 with z ̸= x+ y for each n = 33,
41, 47, 51, 59, 69, 77, 83, 89, 101, 119, 123, 137, 141, 149, 159, 161, 173, 179, 187, 197, 209,
213, 227, 233, 383, 389, 393, 1007 and 1013, for which no previously known solutions exist,
in the range n ≤ 233.
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In this study, we verify the validity of the Hasse’s principle for specific n, and by using
the 4-descent of MAGMA, we prove that the elements of the Tate-Shafarevich group actually
correspond to rational points in concrete numbers.

2 Problem Statement and Conditions

Consider the equation
x4 + y4 + z4 = 2n2w4 (1)

where n is square-free and satisfies:

2 ∤ n,
5 ∤ n, (2)

29 ∤ n.

We can easily confirm that if n is square-free and gcd(n, 290) > 1, then the equation (1)
have no solutions with gcd(x, y, z, w) = 1 by checking (mod 16), (mod 5), and (mod 29).

Assuming z ̸= 0, normalize by dividing by z4, and replace x
z
, y
z
, w
z
to x, y, t:

x4 + y4 + 1 = 2n2t4. (3)

3 Quadratic Curves and Common Points

Introduce rational parameter u and two quadratic curves:

(u2 − 2)y2 = (−u2 + 4u− 2)x2 − 2(u2 − 2u+ 2)x+ (−u2 + 4u− 2) (4)

±n(u2 − 2)t2 = (u2 − 2u+ 2)x2 + (−u2 + 4u− 2)x+ (u2 − 2u+ 2). (5)

Theorem 1. Common rational solutions (x, y, t) to (4),(5) yield solutions to (3).[4]

4 The Involution Map

For rational parameter u and variables x, y, t, we deine the following involution map τ :

τ(u, x, y, t) =

{
(u−1
u−2

,−x, y, t) if u ̸= 2,

(2,−x, y, t) if u = 2 .
(6)

The involution τ preserves the quadratic curves (4) and (5), and therefore all their com-
mon rational points (x, y, t) with except for the sign of x.

Therefore, the integer solutions of (1) are identical for parameter u and parameter τ(u) =
u−1
u−2

. In other words, it is sufficient to find the common rational point (x, y, t) for either
parameter u or parameter τ(u) .
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5 Reduction to Quartic Elliptic Curve

Given a constant H (for example, 200), using Helmut Hasse’s local-global principle, we
can select a rational number u such that the height h(u) ≤ H, so that the two quadratic
curves (4) and (5) each have a rational point. Then, we can filter the rational parameter u
effectively. This contributes to the efficiency of rational point search.

For each rational parameter u, fix initial rational point (x0, y0) on (4); intersect with line

y = k(x− x0) + y0

to get second point (x(k), y(k)) as rational functions of k.
Substitute x(k) into (5) to obtain the assoicated elliptic curve:

En,u : ±Y 2 = aX4 + bX3 + cX2 + dX + e, (7)

where Y = t(pk2 + qk + r)2, X = k, and p, q, r, a, b, c, d, e ∈ Z.
The right-hand quadratic in (5) has no real roots, so sign is unique: +Y 2 if a > 0, −Y 2

if a < 0.[5]
Because a, b, c, d, e ∈ Z , a rational point (X, Y ) on (7) with X /∈ Z should be a non-

torsion point .

6 Singular Cases

The first quadratic curve (4) is singular iff u = 0, 1, 2; then reduces to

x2 + x+ 1 = nt2,

solvable only for n = 1. The second quadratic curve (5) is always nonsingular.[4]
Seiji Tomita and Oliver Couto [2] (Th.4.2) give a parameter solution to (1) using poly-

nomials in p and q if there exist integers p and q such that n = 3p2 + q2. However, our
parameter solution via the elliptic curves is different from this polynomial solution and we
could apply even when n ̸= 3p2 + q2.

7 Computing Rational Points with MAGMA

Transform (7) to Weierstrass form; apply MAGMA’s FourDescent to compute rank, gener-
ators, and torsion.

We choose a rational parameter u and the associated elliptic curve (7) with positive rank
. For non-torsion point (X, Y ) on the curve (7) , generate m-multiples; set k = X and
back-substitute to (x, y, t), then clear denominators for primitive (x, y, z, w).[5]

8 Necessity and Sufficiency of Local Conditions

Theorem 2. For arbitary square-free integer n, infinite primitive solutions of (1) exist iff
gcd(n, 290) = 1 and there exist a rational number u and the associated elliptic curve En,u

with positive rank .
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Proof: Sufficiency via rankEn,u ≥ 1; necessity via p-adic obstructions for p=2,5,29.[3, 4]

Conjecture 1. If n is a square-free integer and gcd(n, 290) = 1, then rankEn,u > 0 for some
rational number u.

Remark 1. Conjecture 1 is valid for n ≤ 247.

9 Numerical Examples

For example n = 41, we can filter rational number u with height(u) ≤ 200 so that both
quadrtic curve (4) and (5) has a rational point. Then we can examine the following 144
rational numbers u:

u =− 1,
1

5
,
1

17
,
−1

49
,
1

53
,
3

2
,
4

17
,
−4

45
,
−4

49
,

4

137
,
7

9
,
8

9
,
8

25
,
−8

45
,
8

81
,

−8

101
,
9

4
, 10,

11

2
,
−11

149
,
12

109
,
−12

185
,
13

53
,
15

17
,
15

113
,
−16

97
,
17

81
,
19

2
,
19

149
,
−19

193
,

−20

81
,
20

109
,
21

37
,
21

61
,
−28

153
,
29

49
,
30

13
,
−32

53
,
−32

117
,
3

16
,
−37

181
,
40

113
,
42

17
,
−43

153
,
44

169
,

48

193
,
−51

157
,
−52

73
,
52

137
,
3

16
,
−55

49
,
−56

89
,
56

145
,
57

109
,
61

113
,
−61

117
,
−64

49
,
64

153
,
−64

157
,
−64

169
,

−67

61
,
−67

81
,
67

101
,
69

20
,
76

113
,
−76

153
,
−76

193
,
76

197
,
77

109
,
−79

153
,
−80

149
,
−84

65
,
−84

101
,
88

117
,
−88

145
,

89

121
,
91

149
,
−91

181
,
92

157
,
93

40
,
94

49
,
−95

149
,
98

53
,
99

50
,
100

153
,
101

40
,
−101

117
,
101

121
,
102

53
,
−104

125
,

105

52
,
−112

117
,
116

121
,
−116

149
,
−116

173
,
−119

89
,
119

145
,
−120

101
,
120

169
,
126

5
,
127

153
,
128

145
,
−128

153
,
−132

97
,
−132

181
,

135

34
,
138

85
,
141

20
,
141

32
,
145

64
,
146

29
,
147

157
,
150

37
,
−152

197
,
153

32
,
153

104
,
154

73
,
161

52
,
161

169
,
162

17
,

162

113
.
165

52
,
167

10
,
168

173
,
171

26
,
173

181
,
−176

197
,
177

8
,
−177

193
,
177

197
,
178

5
,
179

26
,
182

101
,
186

73
,
187

197
,

−188

137
,
−188

185
,
189

8
,
189

128
,
−196

153
,
−196

181
,
198

89
,
198

125
,
−199

193
.

For u = 198
125

, we easily get a inital rational point R(−15559
420776

, 775755
420776

) of the quadratic curve
(4).

A line with a slope of k that passes through R intersects the quadratic curve (4) with
another point (x(k).y(k)).

Then, we have following:
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y =k

(
x+

15559

420776

)
+

775755

420776
, (8)

x(k) =
61878143k2 + 6170355270k − 8594866697

−1673426152k2 + 6005735848
, (9)

y(k) =
3085177635k2 − 8372793090k + 11072351115

−1673426152k2 + 6005735848
. (10)

From (9) and (5), we have followings:

{
17251816(3977k2 − 14273)2t

}2
= 287644205070868215349k4 − 1436879617899897971340k3

+ 3997420003135110578878k2 − 6003499258764516668940k + 4279348392455021754229.
(11)

We set

Y =17251816(3977k2 − 14273)2t, (12)

X =k, (13)

then we have following the associated elliptic curve

E41,u : Y 2 =287644205070868215349X4 − 1436879617899897971340X3 + 3997420003135110578878X2

− 6003499258764516668940X + 4279348392455021754229 (14)

We confirm the syzygy maps an elliptic curve

E0
41,u : y2 =x3 − 131533381367244164215248081536630341171740672x

− 496946952622325121564854492450656958760656582555086171408919691264
(15)

to the elliptic curve E41,u.
The minimal standard model of E0

41,u is

E2
41,u : y2 = x3 + x2 − 3237629437155959990x− 1919096286007227296033058600. (16)

5



Considering E41,u to 2-descent of E2
41,u, we execute MAGMA’s 4-descent, and get two

independent rational points of E2
41,u :

P1

(
−174942651055478264675987

244780606357156
,
20891124644686233492499046337781371

3829706654220268054696

)
,

P2

(
−14294068250419325295136330646500671045398507

10710488752832501604605089844433796
,

5513451734757779144704564173941245101175055697275239743153358521

1108444452616653816973134639524599540568006219348344

)
.

By rational transformation [2524656, 2124629306112, 0, 0]−1. we get two independent ra-
tional points of E0

41,u

Q1

(
−278766212361028884962560363157615040

61195151589289
,

42022169170381781318268794555009598687378195785697792

478713331777533506837

)
,

Q2

(
−22777197225615531144367809302749081158104851178197540800

2677622188208125401151272461108449
,

11090221586976991451411531078086682941672735310414994171896001971993851427077934592

138555556577081727121641829940574942571000777418543

)
.

(17)

By syzygy map, We have some rational points (X, Y ) of E41,u from rational points of
E0

41,u, and some k = X:

k =
30407075

26279287
,
945967865

1248057599
,
1588437129

13721456335
,
−1219384020107

2053661177915
,

7238621986098507

15401438000287805
,
7238621986098507

15401438000287805
,
2523484525026218281

616919842550050055
,
2523484525026218281

616919842550050055
,

7918680427205562475

1555531906528806611
,
7918680427205562475

1555531906528806611
,
206736470097243783595

455301048052810772797
,
206736470097243783595

455301048052810772797
,

· · · .

From (9),(10),(14),(12).(13), we have a rational point (x, y, t) which satifies (3). We have
an integer solution (x, y, z, w) with gcd(x, y, z, w) = 1 which satisfies (1). Changing sign and
replacing x, y, z so that 0 < x ≤ y ≤ z, we have following equations:
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354018554 + 408656284 + 535620314 = 3362 · 78227334

762983397233069404 + 1443760980248375174 + 3920970542732226114 = 3362 · 517457456049106074

226309342785649084445654 + 2184260091684101934245164 + 3834304700080392341238834

= 3362 · 516308699310629389191594

663622464789878363425529920912016646852104656394740204

+ 969030918459711378200400199048744485164824661791390014

+ 1249943128981881115234908112437251502046573326354493034

= 3362 · 179838831232746850498471369045331511826771885565115414

For u = −52
137

, similarly, we have the associated elliptic curve

E41,u : Y 2 =146130108644622127X4 − 34585954604570560X3 + 75769621840114278X2

− 370651588684471816X + 306037888200539443 (18)

and rational numbers k = X:

k =
16427

15371
,
−74303

29149
,
1042559

1271441
,
−2229773

1793951
,

934714950429932604431377977

651572367992463462669439919
,
−61892621095341520962149406917

5571721957938435347773599559
,

1069338108481668757405299870337

1855015185625408790131546702081
,
1277338685423332040496182410519

2234155375514514753340048721189
,

· · · .

and integer solutions of (1)

929884 + 1855854 + 2007114 = 3362 · 304334

3146239561815533542732499720997556459605935220940134

+ 338302329138750105233094179362897255579886004117266214

+ 589583937458783115292809314626850620888785885036010204

= 3362 · 79445726929376059312175416967121359045209773084337274

· · · .

For u = 44
169

, similarly, we have the associated elliptic curve

7



E41,u : Y 2 =417877855555951071X4 + 1299785550450804690X3 + 1519574898215554612X2

+ 791044232470008790X + 154651753418222341 (19)

and rational numbers k = X:

k =
−36225655093

42531504399
,
−737917016899

985152753743
,
−3284931787843

315094317701
,
−14199170625974

19434669271167
,

· · · .

and integer solutions of (1)

54413896863779661974 + 595288164915694633814 + 737060711223624819804

= 3362 · 105766378091231729674

· · · .

Similarly, for several n we can find a rational number u, a initial rational point (x0, y0)
of (4), a rational number k , and an integer solution (x, y, z, w) with 0 < x ≤ y ≤ z, the
result is as follows:

n u (x0, y0) k Solution (x, y, z, w) (0 < x ≤ y ≤ z) height(k)

1 938
241

(
1799
1172 ,

1565
1172

)
30407075
26279287 (11270111669357, 22338600682595,

80267274165144, 67603989724187)
67.012

3 −504
4817

(−2566
1609 , 4519

1609

) −4519
957 (1609, 2566, 4519, 2257) 21.068

33 24
53

(−309
763 , 100

109

)
14467817
5083051 (528988010581, 673826751736,

822834434251, 135897934731)
56.375

41 198
125

(−15559
420776 ,

775755
420776

)
2558149
3980783 (35401855, 40865628, 53562031, 7822733) 36.996

47 32
85

(−165
4573 ,

−20158
32011

)
1262
987 (9051, 142546, 264089, 33059) 24.724

51 −73
121

(
835
1143 ,

−1298
1143

) −553
1283 (129205, 145309, 168674, 23303) 22.230

59 53
345

(
6408
9377 ,

3521
9377

)
6419
7003 (228599, 398665, 545334, 63949) 27.057

69 5
169

(
182033
581575 ,

379548
581575

) −727
343 (2512, 9347, 13145, 1409) 18.306

77 28
53

( −1379
192144 ,

−62735
192144

)
577723
2579259 (111417913176, 652385155333,

3074200685543, 294747082303)
58.008

Table 1: 9 concrete primitive solutions spanning Height 4–14 digits. All n satisfy mod 5, 16,
29 conditions and gcd=1.
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n u (x0, y0) k Solution (x, y, z, w) (0 < x ≤ y ≤ z) height(k)

83 −8
29

(
19
27 ,

20
27

)
2087
1741 (222601, 2408274, 2863999, 292549) 31.655

89 −4
9

(
1

124 ,
−183
124

) −1944381
9383 (1741159879, 278196472772,

415156380825, 38743789163)
51.797

89 −4
9

(
1

124 ,
−183
124

) −1944381
9383 (1741159879, 278196472772,

415156380825, 38743789163)
51.797

101 64
585

(
210919
356203 ,

13332
356203

)
4970540937918897947896533
33171077050940981350902139 (11566524698278008178175494709128636544635230699,

55533467549319684604321403836601861318197410455,
96201694481007146665176733936502346101197249772,
8264519317562045735851914877899065409532634189)

218.043
119 −133

157

( −506251
59374565 ,

−130362878
59374565

) −5229646070084
2135357527917 (30287965481668073,

434289126261707635,
996472927107738074,
77496631489680909)

82.860

123 32
37

(−9
22 ,

1
22

) −159
89 (10778, 13981, 20717, 1671) 19.127

137 56
181

(
1309
4936 ,

−1315
4936

) −15311
18473 (28988, 107079, 369559, 26597) 28.398

141 −60
61

(
512045
261178 ,

−964513
261178

) −19014301
5702545 (72211175, 446853184, 1030134149,

73587999)
40.428

149 −19
85

(−929
1733 ,

3156
1733

)
236
383 (636, 835, 977, 77) 12.442

159 4
29

(
2, −3

7

) −1747
2359 (337729, 353654, 622355, 43357) 25.795

161 77
81

(−2063
3319 , 36

3319

) −292
507 (262692, 641495, 842767, 60149) 24.866

173 8
9

(−7
5 , 24

35

) −257
42 (63816, 94031, 110677, 7997) 20.166

179 −112
145

(
17337
532423 ,

−1046582
532423

)
28727529
1382477 (586876415, 2789777249, 4823616902,

311333271)
44.395

187 84
197

(
467

12540 ,
5717
12540

) −4261
5129 (6086, 9507, 10861, 761) 20.390

197 −188
137

(−4538
19963 ,

209465
19963

) −364547
1019 (50704, 298617, 012059, 180461) 31.740

209 4
17

(
9
22 ,

−1
22

)
4210157
2492579 (456741325525, 11021276613067,

13918037099988, 879530604163)
60.758

213 −96
85

(
2859
2033 ,

6602
2033

)
546386203
285025889 (46410580396087, 48706449849644,

118968414820139, 6940828958469)
66.220

221 −7
13

(
5
3 ,

92
51

)
4554725986626873439777
2251181595697275141261 (18170075829628946534152326312538321309945,

324694919799660579526277311707208043880141,
545942434978754261132356383765496357327888,
31804802854316895728509269912421630763669)

190.309
227 −1 (1,−2) 613

887 (31731, 855269, 2323538, 130273) 28.180

233 4
53

(−4507
888 , −5047

888

)
413383
450883 (1103010172, 1861529873, 3269841633,

185225597)
43.493

Table 2: 19 concrete primitive solutions spanning Height 3–42 digits. All n satisfy mod 5,
16, 29 conditions and gcd=1.
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n u (x0, y0) k Solution (x, y, z, w) (0 < x ≤ y ≤ z) height(k)

239 136
261

(
29531
484199 ,

71760
484199

) −890704612273
634303599357 (1640984772620303606,

3117491002540389405,
3477412467901354591,
215837293427890067)

85.474

249 −24
145

(−73441
147 , 12272

21

) −49547964571
43598116307 (7790928430539881312,

59531023402497214735,
61689237905359407721,
3842966957265123567)

93.180

251 7
9

(−137
187 , −138

187

)
188
43 (1403, 1530, 3109, 169) 14.875

383 204
377

(−12212
64707 , −38035

64707

)
1550408297639667679
1935402453467912411 (52271274597586749652046870748358,

56442182599777575561849640531969,
68037165015212162410398738968939,
3396464828358953323939105317063)

149.093

389 989
232

(
29825
190557 ,

31732
190557

)
59056815385513828
47189577215495093 (2790220517471471853994808398379,

3375566679888983646972955355900,
3963453138704995482589945354391,
194958328042827044471167136157)

139.722

393 56
73

(−209
863 , −36

863

) −127457
146606 (201277984, 2153997596, 3061641247,

142059643)
41.032

1003 −16
65

(−48448
308665 ,

−62703
44095

)
1220947
2671121 (357153561, 441486806, 522795199,

15911377)
39.595

1007 −220
157

(
321

60268 ,
973057
60268

) −246903836004572641662901577
6914579901675743188735327 (18754633151703759081272317852581751270809408588853,

24040798893695666175180959976981448725994130618754,
276962098995579830477463625832507108420988928415519,
7339332340035270076957220087297502594586408542833)

232.595
1013 3

101

(
20951
17421 ,

5908
17421

)
9963327853555
2964128052389 (24574653502948757745404,

98778234488177851314697,
101516509859021233400459,
3148857129793207750683)

104.165

Table 3: 9 concrete primitive solutions spanning Height 3–51 digits. All n satisfy mod 5, 16,
29 conditions and gcd=1.
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10 Conclusion

This yields rational points (x, y, t) of (3) via Mordell-Weil groups of (7). If we could find a
rational number u and the associated elliptic curve En,u with rankEn,u > 0, then the method
systematically generates infinte families of primitive solutions of (1) .

While a universal parametric solution for all n remains an open question, the successful
derivation of a 46-digit solution for n = 101 through our elliptic curve reduction framework
marks a significant departure from previous constraints. Future work will focus on analyzing
the height of these points to better understand the arithmetic complexity of solutions for
n ≡ 2 (mod 3). While a universal parametric solution for all n remains an open question, the
successful derivation of a 46-digit solution for n = 101 through our elliptic curve reduction
framework marks a significant departure from previous constraints. Future work will focus
on analyzing the height of these points to better understand the arithmetic complexity of
solutions for n ≡ 2 (mod 3).

Appendix: MAGMA Implementation

// search rational points for 4-descent fd and bound M

SetClassGroupBounds("GRH");

function RP4(fd,M)

T0:=Realtime();

for J:=1 to #fd do

printf "J="; J;

FD:=fd[J];

pts:=PointsQI(FD,M);

F,m:=AssociatedEllipticCurve(FD); F;

printf "rootno="; RootNumber(F);

for K:=1 to #pts do

P:=m(pts[K]); P; printf "height "; Height(P);

IsPoint(F,P[1]);

end for; //K

end for; //J

T1:=Realtime(T0);

printf "realtime="; T1;

return #fd;

end function;

// calculate 4-descent for considering y^2=f(x) as 2-descent of the syzygy

// elliptic curve of 4th degree polynomial f(x)

P<x> := PolynomialRing(Rationals());

11



function C0(f)

SetClassGroupBounds("GRH");

C := HyperellipticCurve(f);

time fd := FourDescent(C : RemoveTorsion);

#fd;

return fd;

end function;

//

// Example for elliptic curve :

// E_{41,u}: Y^2 = 287644205070868215349*X^4 - 1436879617899897971340*X^3 \

// + 3997420003135110578878*X^2 - 6003499258764516668940*X \

// + 4279348392455021754229

// Execute:

//

// fd:=C0(287644205070868215349*x^4 - 1436879617899897971340*x^3 \

// + 3997420003135110578878*x^2 - 6003499258764516668940*x \

// + 4279348392455021754229);

//

// RP4(fd,10^12);

//
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